Skip to main content
Log in

Phosphorus removal potential of aquatic macrophytes in a shallow eutrophic system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic macrophytes in inland lakes provide a wide range of ecosystem services. Management efforts to restore aquatic macrophytes for ecosystem recovery need comprehensive understanding of the interaction between growth and nutrient removal efficiency. In contrasting hydrodynamic environments, we examined the growth and phosphorus accrual of two common submerged (Vallisneria natans) and emergent (Acorus calamus) macrophytes. Both biomass and nutrient storage of two macrophytes were observed with significant increases during the incubation period, suggesting the great potential of selected macrophytes in suppressing eutrophication in shallow lakes. Experimental results showed very opposite impacts of flowing water on two macrophyte types. The flowing water was observed to restrain submerged macrophyte’s growth and nutrient accrual, but oppositely to stimulate the emergent type. Specifically, our study demonstrated an average reduction of 33.7% in individual plant biomass and 11.4% in nutrient inventory of V. natans, but an overall increase of 27.2% in biomass and 50.0% in nutrient inventory for A. calamus in flowing-water environments. We estimated a total removal of 470-ton phosphorus assuming the complete comeback of aquatic macrophytes in Lake Taihu, as much as 22% of the annual external loading. The results from this study could inform management of aquatic macrophytes at local and lake-wide scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ackerman, J. D., 2000. Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. In Dafni, A., M. Hesse & E. Pacini (eds), Pollen and Pollination Springer, Vienna: 167–185.

    Chapter  Google Scholar 

  • Ali, F., G. Jilani, R. Fahim, L. Bai, C. Wang, L. Tian & H. Jiang, 2019. Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals. Journal of Environmental Management 249: 109330.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710(1): 23–37.

    Article  Google Scholar 

  • Bennion, H., G. L. Simpson & B. J. Goldsmith, 2015. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Frontiers in Ecology and Evolution 3: 94.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73(1): 1–14.

    Article  CAS  Google Scholar 

  • Choudhury, M. I., X. Yang & L. A. Hansson, 2015. Stream flow velocity alters submerged macrophyte morphology and cascading interactions among associated invertebrate and periphyton assemblages. Aquatic Botany 120: 333–337.

    Article  Google Scholar 

  • Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1(3): 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400(1–3): 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, L. N., T. N. Haupt, L. Zhang & W. J. Mitsch, 2021. Role of emergent and submerged vegetation and algal communities on nutrient retention and management in a subtropical urban stormwater treatment wetland. Wetlands Ecology and Management 29(2): 245–264.

    Article  CAS  Google Scholar 

  • Hestir, E. L., D. H. Schoellhamer, J. Greenberg, T. Morgan-King & S. L. Ustin, 2016. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta. Estuaries and Coasts 39(4): 1100–1112.

    Article  Google Scholar 

  • Hurd, C. L., 2000. Water motion, marine macroalgal physiology, and production. Journal of Phycology 36(3): 453–472.

    Article  CAS  PubMed  Google Scholar 

  • Janauer, G. A., U. Schmidt-Mumm & B. Schmidt, 2010. Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering 36(9): 1138–1145.

    Article  Google Scholar 

  • Janssen, A. B., S. Hilt, S. Kosten, J. J. de Klein, H. W. Paerl & D. B. Van de Waal, 2021. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology 66(1): 1–12.

    Article  Google Scholar 

  • Körner, S., 2002. Loss of submerged macrophytes in shallow lakes in North-Eastern Germany. International Review of Hydrobiology: A Journal Covering All Aspects of Limnology and Marine Biology 87(4): 375–384.

    Article  Google Scholar 

  • Licci, S., H. Nepf, C. Delolme, P. Marmonier, T. J. Bouma & S. Puijalon, 2019. The role of patch size in ecosystem engineering capacity: a case study of aquatic vegetation. Aquatic Sciences 81(3): 1–11.

    Article  Google Scholar 

  • Lin, Q., K. Zhang, S. McGowan, E. Capo & J. Shen, 2021. Synergistic impacts of nutrient enrichment and climate change on long-term water quality and ecological dynamics in contrasting shallow-lake zones. Limnology and Oceanography 66(9): 3271–3286.

    Article  CAS  Google Scholar 

  • Luo, J., X. Li, R. Ma, F. Li, H. Duan, W. Hu, B. Qin & W. Huang, 2016. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecological Indicators 60: 503–513.

    Article  Google Scholar 

  • Luo, J., R. Pu, H. Duan, R. Ma, Z. Mao, Y. Zeng, L. Huang & Q. Xiao, 2020. Evaluating the influences of harvesting activity and eutrophication on loss of aquatic vegetations in Taihu Lake, China. International Journal of Applied Earth Observation and Geoinformation 87: 102038.

    Article  Google Scholar 

  • Madsen, T. V., K. Sand-Jensen & S. Beer, 1993. Comparison of photosynthetic performance and carboxylation capacity in a range of aquatic macrophytes of different growth forms. Aquatic Botany 44(4): 373–384.

    Article  CAS  Google Scholar 

  • Madsen, T. V. & N. Cedergreen, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47(2): 283–291.

    Article  Google Scholar 

  • Maji, S., P. R. Hanmaiahgari, R. Balachandar, J. H. Pu, A. M. Ricardo & R. M. Ferreira, 2020. A review on hydrodynamics of free surface flows in emergent vegetated channels. Water 12(4): 1218.

    Article  Google Scholar 

  • Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.

    Article  CAS  Google Scholar 

  • Mei, X. Q., Y. Yang, N. F. Y. Tam, Y. W. Wang & L. Li, 2014. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Research 50: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Moore, M., S. P. Romano & T. Cook, 2010. Synthesis of Upper Mississippi River System submersed and emergent aquatic vegetation: past, present, and future. Hydrobiologia 640(1): 103–114.

    Article  Google Scholar 

  • Moss, B., 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Science of the Total Environment 434: 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Mony, C., G. Thiebaut & S. Muller, 2007. Changes in morphological and physiological traits of the freshwater plant Ranunculus peltatus with the phosphorus bioavailability. Plant Ecology 191(1): 109–118.

    Article  Google Scholar 

  • Orth, R. J., M. R. Williams, S. R. Marion, D. J. Wilcox, T. J. Carruthers, K. A. Moore, W. M. Kemp, W. C. Dennison, N. Rybicki, P. Bergstrom & P. A. Batiuk, 2010. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality. Estuaries and Coasts 33(5): 1144–1163.

    Article  CAS  Google Scholar 

  • Patrick, C. J. & D. E. Weller, 2015. Interannual variation in submerged aquatic vegetation and its relationship to water quality in subestuaries of Chesapeake Bay. Marine Ecology Progress Series 537: 121–135.

    Article  CAS  Google Scholar 

  • Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45.

    Article  Google Scholar 

  • Poirier, V., C. Roumet & A. D. Munson, 2018. The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry 120: 246–259.

    Article  CAS  Google Scholar 

  • Reitsema, R. E., S. Preiner, P. Meire, T. Hein, G. De Boeck, R. Blust & J. Schoelynck, 2020. Implications of climate change for submerged macrophytes: effects of CO2, flow velocity and nutrient concentration on Berula erecta. Aquatic Ecology 54(3): 775–793.

    Article  CAS  Google Scholar 

  • Rezania, S., H. Kamyab, P. F. Rupani, J. Park, N. Nawrot, E. Wojciechowska, K. K. Yadav, M. L. Ghahroud, A. A. Mohammadi, S. T. Thirugnana & S. Chelliapan, 2021. Recent advances on the removal of phosphorus in aquatic plant-based systems. Environmental Technology & Innovation 24: 101933.

    Article  CAS  Google Scholar 

  • Schein, A., S. C. Courtenay, C. S. Crane, K. L. Teather & M. R. van den Heuvel, 2012. The role of submerged aquatic vegetation in structuring the nearshore fish community within an estuary of the southern Gulf of St. Lawrence. Estuaries and Coasts 35(3): 799–810.

    Article  Google Scholar 

  • Schelske, C. L., E. F. Lowe, W. F. Kenney, L. E. Battoe, M. Brenner & M. F. Coveney, 2010. How anthropogenic darkening of Lake Apopka induced benthic light limitation and forced the shift from macrophyte to phytoplankton dominance. Limnology and Oceanography 55(3): 1201–1212.

    Article  Google Scholar 

  • Shen, C., Q. Liao, H. A. Bootsma & B. M. Lafrancois, 2022. Modelling the transport of sloughed cladophora in the nearshore zone of Lake Michigan. Journal of Environmental Management 323: 116203.

    Article  PubMed  Google Scholar 

  • Shen, C., J.M. Testa, M. Herrmann & R.G. Najjar, 2023. Decoupling of Estuarine Hypoxia and Acidification as Revealed by Historical Water Quality Data. Environmental Science & Technology.

  • Tang, C., Y. Li & K. Acharya, 2016. Modeling the effects of external nutrient reductions on algal blooms in hyper-eutrophic Lake Taihu, China. Ecological Engineering 94: 164–173.

    Article  Google Scholar 

  • Wang, L., T. Yang, P. Hei, J. Zhang, J. Yang, T. Luo, G. Zhou, C. Liu, R. Wang & F. Chen, 2022. Internal phosphorus cycling in macrophyte-dominated eutrophic lakes and its implications. Journal of Environmental Management 306: 114424.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Y. Gao, Q. Li, J. Gao, S. Zhai, Y. Zhou & Y. Cheng, 2019. Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China. Science of the Total Environment 651: 367–380.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D. & Z. Hua, 2014. The effect of vegetation on sediment resuspension and phosphorus release under hydrodynamic disturbance in shallow lakes. Ecological Engineering 69: 55–62.

    Article  Google Scholar 

  • Wu, D., C. Shen, Y. Cheng, J. Ding & W. Li, 2023. Phosphorus removal by aquatic vegetation in shallow eutrophic lakes: a laboratory study. Environmental Science and Pollution Research 30(6): 16166–77.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., H. W. Paerl, B. Qin, G. Zhu & G. Gaoa, 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography 55(1): 420–432.

    Article  CAS  Google Scholar 

  • Xu, H., M. J. McCarthy, H. W. Paerl, J. D. Brookes, G. Zhu, N. S. Hall, B. Qin, Y. Zhang, M. Zhu, J. J. Hampel & S. E. Newell, 2021. Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: Implications for nutrient management. Limnology and Oceanography 66(4): 1492–1509.

    Article  CAS  Google Scholar 

  • Ye, C., C. H. Li, H. C. Yu, X. F. Song, G. Y. Zou & J. Liu, 2011. Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay. Taihu Lake. Ecological Engineering 37(9): 1434–1437.

    Article  Google Scholar 

  • Zeng, L., F. He, Z. Dai, D. Xu, B. Liu, Q. Zhou & Z. Wu, 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecological Engineering 106: 578–587.

    Article  Google Scholar 

  • Zhang, Y., X. Liu, B. Qin, K. Shi, J. Deng & Y. Zhou, 2016. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Scientific Reports 6(1): 1–12.

    Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

  • Zhu, M., G. Zhu, W. Li, Y. Zhang, L. Zhao & Z. Gu, 2013. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environmental Pollution 173: 216–223.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of Jiangsu Province (BK20210953), the Public Scientific Research Institution Foundation of Jiangsu of China (GYYS2021205), Zhejiang Provincial Natural Science Foundation of China (LY18D060005), and Scientific Research Fund of the Second Institute of Oceanography, MNR (JG1521).

Author information

Authors and Affiliations

Authors

Contributions

CS: conceptualization, methodology, data curation, formal analysis, writing original draft. DW: methodology, investigation, funding acquisition. BK: investigation, writing, review and editing. BC: formal analysis, writing, review and editing. CH: resources, writing review and editing, funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan Wu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling editor: Andre Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Wu, D., Chen, B. et al. Phosphorus removal potential of aquatic macrophytes in a shallow eutrophic system. Hydrobiologia 850, 3935–3948 (2023). https://doi.org/10.1007/s10750-023-05261-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05261-z

Keywords

Navigation