Skip to main content

Advertisement

Log in

Effect of Seasonal Variation on Pollution Load of Water of Hokersar Wetland: a Case Study of Queen Wetland of Kashmir, J&K, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Hokersar wetland is vital for the endurance of migratory birds, but the topography of wetland has been severely altered during the last four decades. This wetland area has reduced from 1875.04 ha in 1969 to 1300 ha in 2008 due to several reasons, viz, encroachments and pollution. Keeping these facts in view, the present study was carried out to determine the impact of anthropogenic activities on the water quality of the wetland. Standard methods were used for analyzing various physico-chemical characteristics of water of a wetland. Among all the four sites, inlet sampling site was having the highest mean value of turbidity (2.06 NTU), water temperature (23.55 °C), electrical conductivity (0.233 dS/m), nitrate-nitrogen (0.046 mg/L), nitrite nitrogen (0.681 mg/L), ammoniacal nitrogen (0.210 mg/L), calcium (48.60 mg/L), phosphate (0.071 mg/L), and potassium (0.456 mg/L). The highest mean value (11.34 mg/L) of magnesium was recorded at the outlet, also having maximum pH (7.10). The lowest mean values of all physico-chemical characteristics of water were observed at the outlet site except for pH and Mg. The highest mean value was found for water temperature (27.25 °C), EC (0.228 dS/m, nitrate-nitrogen (0.485 mg/L), nitrite-nitrogen (0.035 mg/L), ammoniacal nitrogen (0.196 mg/L), Ca (58.08 mg/L), phosphate (0.047 mg/L), and K (0.480 mg/L) during summer season. A decreasing trend of trace metal concentration at different site in all seasons was observed in the following order: inlet (polluted) > center > Trapa abundance site > outlet. Similarly, COD and BOD values ranged from 69.69 to 115.89 mg/L and 56.08 to 95.05 mg/L in three different seasons, respectively. The wetland’s BOD level (95.05 mg/L) is too high, indicating high pollution level. The results of the present study have indicated that the pollutants and trace elements find their entry into the aquatic ecosystem and are a matter of great concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abdar, M. (2013). Physico-chemical characteristics and phytoplankton of Morna Lake, Shirala (MS) India. Biolife, 1(2), 12–17.

    Google Scholar 

  • Adeniyi, A., Yusuf, K., & Okedeyi, O. (2008). Assessment of the exposure of two fish species to metals pollution in the Ogun river catchments, Ketu, Lagos, Nigeria. Environmental Monitoring and Assessment, 137(1), 451–458.

    Article  CAS  Google Scholar 

  • Aharoni, I., Dahan, O., & Siebner, H. (2022). Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone-groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis. Water Research, 219, 118508.

    Article  CAS  Google Scholar 

  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660.

    Article  CAS  Google Scholar 

  • Alam, M. J., et al. (2007). Water quality parameters along rivers. International Journal of Environmental Science & Technology, 4(1), 159–167.

    Article  CAS  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

    Article  CAS  Google Scholar 

  • Angulo-Bejarano, P. I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635.

    Article  CAS  Google Scholar 

  • Bano, H., Lone, F. A., Bhat, J. I. A., Rather, R. A., Malik, S., & Bhat, M. A. (2018). Hokersar wet land of Kashmir: its utility and factors responsible for its degradation. Plant Archives, 18(2), 1905–1910.

    Google Scholar 

  • Bano, H., Malik, S., Bhat, M. A., & Nazir, N. (2021). Impact of pollution load of water and sediment of Hokersar wetland on nutrient concentration and biochemical parameters of Trapa natans L.: An economically important plant species of Kashmir, Jammu and Kashmir, India. Annals of Phytomed., 10(1), 298–306.

    Article  CAS  Google Scholar 

  • Bano, H., Malik, S., Rather, R. A., Bhat, J. I., Islam, S., Bhat, T. A., & Bhat, M. A. (2022). Impact of anthropogenic activities on physico-chemical properties of sediment of hokersar wetland: A protected wildlife reserve (Ramsar Site No. 1570) of Kashmir Himalaya. Bangladesh Journal of Botany, 51(1), 83–92.

    Article  Google Scholar 

  • Baruah, D., & Baruah, P. P. (2022). Water quality monitoring of Kapla Beel: An ecologically sensitive floodplain wetland of Eastern Himalaya Biodiversity Hotspot. International Journal of Energy and Water Resources, 1–20.

  • Bharathi, M. D., Venkataramana, V., & Sarma, V. V. S. S. (2022). Phytoplankton community structure is governed by salinity gradient and nutrient composition in the tropical estuarine system. Continental Shelf Research, 234, 104643.

    Article  Google Scholar 

  • Bhat, S. A., Parmeet, S., Jogi, K. S., Rather, R. A., & Thenua, O. V. S. (2011). Influence of biofertilizers on yield and phosphorus uptake at various levels of phosphorus in mungbean (Vigna radiate L. Wilczek.). Environment and Ecology, 29(1A), 284–286.

    Google Scholar 

  • Bhat, S. U., Nisa, A. U., Sabha, I., & Mondal, N. C. (2022). Spring water quality assessment of Anantnag district of Kashmir Himalaya: Towards understanding the looming threats to spring ecosystem services. Applied Water Science, 12(8), 1–17.

    Article  Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2(2), 161–173.

    Article  Google Scholar 

  • Bhuiyan, J., & Gupta, S. (2007). A comparative hydrobiological study of a few ponds of Barak Valley, Assam and their role as sustainable water resources. Journal of Environmental Biology, 28(4), 799.

    CAS  Google Scholar 

  • Bowes, K. M., White, J. R., Maiti, K., & Meselhe, E. (2022). Surface water temperature impacts on coastal wetland denitrification: Implications for river reconnection. Science of the Total Environment, 828, 154397.

    Article  CAS  Google Scholar 

  • Canpolat, Ö., Varol, M., Okan, Ö. Ö., & Eriş, K. K. (2022). Sediment contamination by trace elements and the associated ecological and health risk assessment: A case study from a large reservoir (Turkey). Environmental Research, 204, 112145.

    Article  CAS  Google Scholar 

  • Chang, F., Hou, P., Wen, X., Duan, L., Zhang, Y., & Zhang, H. (2022). Seasonal stratification characteristics of vertical profiles and water quality of Lake Lugu in Southwest China. Water, 14(16), 2554.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, J., Zhang, W., Li, Q., Hu, Y., Wang, L., … & Wang, J. (2022). Increased ecological and health risks associated with potentially toxic trace elements in agricultural soil adversely affected by gold (Au) mining activities. Journal of Soils and Sediments, 22(2), 509–521.

  • Choudhury, T. R., Ferdous, J., Haque, M. M., Rahman, M. M., Quraishi, S. B., & Rahman, M. S. (2022). Assessment of heavy metals and radionuclides in groundwater and associated human health risk appraisal in the vicinity of Rooppur nuclear power plant, Bangladesh. Journal of Contaminant Hydrology, 251, 104072.

    Article  CAS  Google Scholar 

  • Chouvelon, T., Gilbert, L., Caurant, F., Méndez‐Fernandez, P., Bustamante, P., Brault‐Favrou, M., & Spitz, J. (2022). Nutritional grouping of marine forage species reveals contrasted exposure of high trophic levels to essential micro‐nutrients. Oikos, e08844.

  • Crossman, J., Bussi, G., Whitehead, P. G., Butterfield, D., Lannergård, E., & Futter, M. N. (2021). A new, catchment-scale integrated water quality model of phosphorus, dissolved oxygen, biochemical oxygen demand and phytoplankton: INCA-Phosphorus Ecology (PEco). Water, 13(5), 723.

    Article  CAS  Google Scholar 

  • Dahlawi, S., Naeem, A., Iqbal, M., Farooq, M. A., Bibi, S., & Rengel, Z. (2018). Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere, 194, 171–188.

    Article  Google Scholar 

  • Dar, S. A., Bhat, S. U., & Rashid, I. (2021). The status of current knowledge, distribution, and conservation challenges of wetland ecosystems in Kashmir Himalaya, India. Wetlands Conservation: Current Challenges and Future Strategies, (pp. 175–200).

  • Denton-Thompson, S. M., & Sayer, E. J. (2022). Micronutrients in food production: What can we learn from natural ecosystems? Soil Systems, 6(1), 8.

    Article  CAS  Google Scholar 

  • Diego-Feliu, M., Rodellas, V., Alorda-Kleinglass, A., Saaltink, M., Folch, A., & Garcia-Orellana, J. (2022). Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean. Hydrology and Earth System Sciences, 26(18), 4619–4635.

    Article  Google Scholar 

  • Eisemann, E. R., Thomas, C. C., Balazik, M. T., Acevedo-Mackey, D., & Altman, S. (2021). Environmental factors affecting coastal and estuarine submerged aquatic vegetation (SAV). Engineer Research and Development Center (US).

  • Ezea, V. C., Ihedioha, J. N., Abugu, H. O., & Ekere, N. R. (2022). A multi-criteria approach to drinking and irrigation water assessment of spring water in Igbo-Etiti, Nigeria. Applied Water Science, 12(9), 1–20.

    Article  Google Scholar 

  • Girija, T., Mahanta, C., & Chandramouli, V. (2007). Water quality assessment of an untreated effluent impacted urban stream: The Bharalu tributary of the Brahmaputra River, India. Environmental Monitoring and Assessment, 130(1), 221–236.

    Article  CAS  Google Scholar 

  • Goher, M. E., et al. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 40(3), 213–224.

    Article  Google Scholar 

  • Gopi, N., Rekha, R., Vijayakumar, S., Liu, G., Monserrat, J. M., Faggio, C., … & Vaseeharan, B. (2021). Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, 109161.

  • Gull, R., et al. (2020). Climate change impact on pulse in India-A. Journal of Pharmacognosy and Phytochemistry, 9(4), 3159–3166.

    CAS  Google Scholar 

  • Guo, Y., Sivakumar, M., & Jiang, G. (2021). Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. Science of The Total Environment, 152000.

  • Gupta, D., Ranjan, R. K., Parthasarathy, P., & Ansari, A. (2021). Spatial and seasonal variability in the water chemistry of Kabar Tal wetland (Ramsar site), Bihar, India: Multivariate statistical techniques and GIS approach. Water Science and Technology, 83(9), 2100–2117.

    Article  Google Scholar 

  • Haroon, A. M., & Abd Ellah, R. G. (2021). Variability response of aquatic macrophytes in inland lakes: A case study of Lake Nasser. The Egyptian Journal of Aquatic Research, 47(3), 245–252.

    Article  Google Scholar 

  • He, J., Feng, H., Diao, Z., & Su, D. (2022). Effect of temperature variation on phosphorus flux at the sediment–water interface of the steppe wetlands. Environmental Science and Pollution Research, 1–12.

  • Hosen, L. (2021). Studies on bioaccumulation and mobilization of heavy metals in crops and vegetables grown around industrial environments.

  • Hussain, S. M., Hussain, K., Malik, A. J., Hussaini, A. M., Farwah, S., Rashid, M., & Rather, R. A. (2021). Development of a novel in-vitro protocol for micro propagation of tomato male sterile line (Shalimar FMS-1) of Kashmir Valley India. Acta Scientific Agriculture, 5, 4.

  • Ibrahim, M. H., Mohamed, R. M., Aziz, A. S. A., & Chandran, S. (2021). Preliminary study of water quality surrounding the petrochemical plants at Teluk Kalong industrial area. In IOP Conference Series: Earth and Environmental Science (Vol. 646, No. 1, p. 012021). IOP Publishing.

  • Jaji, M., et al. (2007). Water quality assessment of Ogun River, south west Nigeria. Environmental Monitoring and Assessment, 133(1), 473–482.

    Article  CAS  Google Scholar 

  • Jirsa, F., et al. (2013). Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught. Geochemistry, 73(3), 275–282.

    Article  CAS  Google Scholar 

  • Kashyap, R., Verma, K. S., Bhardwaj, S. K., & Sharma, J. K. (2015). Hydrochemistry of dissolved metals in Yamuna River around industrial hub of Himachal Pradesh, India. Applied Biological Research, 17(3), 288–296.

    Article  Google Scholar 

  • Kaur, H., Syal, J., Dhillon, S. (2003). Impact of fertilizer factory wastes on physicochemical and biological features of Satluj river. Aquatic ecosystems, p. 71–81.

  • Khan, R. M., Jadhav, M. J., & Ustad, I. (2012). Physicochemical analysis of Triveni lake water of Amravati district in (MS) India. Bioscience Discovery, 3(1), 64–66.

    Google Scholar 

  • Khan, K., Shah, G. M., Saqib, Z., Rahman, I. U., Haq, S. M., Khan, M. A., … & Elshikh, M. S. (2022). Species diversity and distribution of macrophytes in different wetland ecosystems. Applied Sciences, 12(9), 4467.

  • Krapivin, V. F., Varotsos, C. A., & Nghia, B. Q. (2017). A modeling system for monitoring water quality in lagoons. Water, Air, & Soil Pollution, 228(10), 1–12.

    Article  CAS  Google Scholar 

  • Krishnamurthi, S., & Bharati, S. (1994). Studies on the metal pollution of river Kali, around Dandeli, Karnataka. Pollution Research, 13(3), 249–252.

    Google Scholar 

  • Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., … & Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810.

  • Kumar, A., Tripathi, V. K., Sachan, P., Rakshit, A., Singh, R. M., Shukla, S. K., ... & Panda, K. C. (2022). Sources of ions in the river ecosystem. In Ecological Significance of River Ecosystems (pp. 187–202). Elsevier.

  • Kumar, J. N., Soni, H., Kumar, R. N., & Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turkish Journal of Fisheries and Aquatic Sciences, 8(2).

  • Kumari, S., & Mishra, A. (2021). Heavy metal contamination. In Soil Contamination-Threats and Sustainable Solutions. IntechOpen.

  • Laskar, N., Singh, U., Kumar, R., & Meena, S. K. (2022). Spring water quality and assessment of associated health risks around the urban Tuirial landfill site in Aizawl, Mizoram, India. Groundwater for Sustainable Development, 17, 100726.

    Article  Google Scholar 

  • Lawson, E. (2011). Physico-chemical parameters and heavy metal contents of water from the Mangrove Swamps of Lagos Lagoon, Lagos, Nigeria. Advances in Biological Research, 5(1), 8–21.

    CAS  Google Scholar 

  • Li, J., Zhang, K., Lin, X., Li, L., & Lin, S. (2022). Phytate as a phosphorus nutrient with impacts on iron stress-related gene expression for phytoplankton: Insights from the diatom Phaeodactylum tricornutum. Applied and Environmental Microbiology, 88(2), e02097-e2121.

    Article  CAS  Google Scholar 

  • Ma, L., et al. (2020). Environmental factors and microbial diversity and abundance jointly regulate soil nitrogen and carbon biogeochemical processes in Tibetan wetlands. Environmental Science & Technology, 54(6), 3267–3277.

    Article  CAS  Google Scholar 

  • Mafuyai, G. M., Ugbidye, S., & Ezekiel, G. I. (2020). Health risk assessment of heavy metals in consumption of vegetables irrigated with tin mine pond water in Jos–South, Plateau State. European Journal of Environment and Earth Sciences, 1(5).

  • Medfu Tarekegn, M., Zewdu Salilih, F., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 6(1), 1783174.

    Article  Google Scholar 

  • Meeting, J.F.W.E.C.o. FA, WH Organization (2007) Evaluation of certain food additives and contaminants: Sixty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives. Vol. 68. World Health Organization.

  • Mehrandish, R., Rahimian, A., & Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. Journal of Herbmed Pharmacology, 8(2), 69–77.

    Article  CAS  Google Scholar 

  • Meshram, P., & Pandey, B. D. (2019). Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries—A resource overview. Resources Policy, 60, 9–22.

    Article  Google Scholar 

  • Mohamadi Yalsuyi, A., Forouhar Vajargah, M., Hajimoradloo, A., Mohammadi Galangash, M., Prokić, M. D., & Faggio, C. (2022). Can Betadine (10% povidone-iodine solution) act on the survival rate and gill tissue structure of Oranda goldfish (Carassius auratus)? Veterinary Research Communications, 46(2), 389–396.

    Article  Google Scholar 

  • Mohamed, A.W. (2005). Geochemical and sedimentology of core sediments and the influence of human activities: Qusier, Safaga and Hurghada Harbors, Red Sea Coast, Egypt.

  • Negi, D., Verma, S., Singh, S., Daverey, A., & Lin, J. G. (2022). Nitrogen removal via anammox process in constructed wetland-a comprehensive review. Chemical Engineering Journal, 135434.

  • Nisa, R. U., Bhat, T. A., Sheikh, T. A., Wani, O. A., Bhat, M. A., Nazir, A., ... & Rashid, U. (2020). The need for new directions on conservation agriculture towards weed management. IRJPAC, 21(24), 177–191.

  • Nugraha, W. D., Sarminingsih, A., & Alfisya, B. (2020). The study of self purification capacity based on biological oxygen demand (BOD) and dissolved oxygen (DO) parameters. In IOP Conference Series: Earth and Environmental Science (Vol. 448, No. 1, p. 012105). IOP Publishing.

  • Ogidi, O. I., & Akpan, U. M. (2022). Aquatic biodiversity loss: Impacts of pollution and anthropogenic activities and strategies for conservation. In Biodiversity in Africa: Potentials, Threats and Conservation (pp. 421–448). Springer.

  • Ogwueleka, T. C., & Christopher, I. E. (2020). Hydrochemical interfaces and spatial assessment of Usuma River water quality in North-Central Nigeria. Scientific African, 8, e00371.

    Article  Google Scholar 

  • Oluwaniyi, O. E., & Asiwaju-Bello, Y. A. (2020). Geochemical processes influencing stream water chemistry: A case study of Ala River, Akure, Southwestern Nigeria. Sustainable Water Resources Management, 6(6), 1–13.

    Article  Google Scholar 

  • Padder, S. A., Mansoor, S., Bhat, S. A., Baba, T. R., Rather, R. A., Wani, S. M., ... & Darwish, H. (2021). Bacterial endophyte community dynamics in apple (Malus domestica Borkh.) germplasm and their evaluation for scab management strategies. Journal of Fungi, 7(11), 923.

  • Palharya, J., & Malvia, S. (1988). Pollution of Narmada river at Hoshangabad in Madhya Pradesh and suggested measures for control (pp. 55–85). Ecology and pollution of Indian rivers. Ashish Publishing House.

    Google Scholar 

  • Pandit, A., & Qadri, S. (1990). Floods threatening Kashmir wetlands. Journal of Environmental Management, 31(4), 299–311.

    Article  Google Scholar 

  • Panikkar, P., Saha, A., Prusty, A. K., Sarkar, U. K., & Das, B. K. (2022). Assessing hydrogeochemistry, water quality index (WQI), and seasonal pattern of plankton community in different small and medium reservoirs of Karnataka, India. Arabian Journal of Geosciences, 15(1), 1–17.

    Article  Google Scholar 

  • Parveen, M., Bhat, M., & Haq, S. (2013). Studies on physicochemical characteristics of Dal lake, Srinagar Kashmir. International Journal of Current Research, 5(6), 1352–1354.

    CAS  Google Scholar 

  • Patel, P., Raju, N. J., Subramanian, V., Gossel, W., & Wycisk, P. (2020). Chemical weathering and atmospheric CO2 consumption in the semi-arid Swarnamukhi basin (Peninsular India) estimated from river water geochemistry. Applied Geochemistry, 113, 104520.

    Article  CAS  Google Scholar 

  • Pawar, S., et al. (2009). Physico-chemical studies of Panshewadi dam water in Kandhar taluka district Nanded, Maharashtra, India. Shodh, Samiksha Aur Mulyankan, 2(6), 817–818.

    Google Scholar 

  • Phungela, T. T., Maphanga, T., Chidi, B. S., Madonsela, B. S., & Shale, K. (2022). The impact of wastewater treatment effluent on Crocodile River quality in Ehlanzeni District, Mpumalanga Province, South Africa. South African Journal of Science, 118(7–8), 1–8.

    Google Scholar 

  • Piacente, J. N., et al. (2020). Characterizing lentic habitats in golf courses and adjacent green spaces: Water quality, water chemistry, pesticide concentrations, and algal concentrations. Journal of Freshwater Ecology, 35(1), 507–522.

    Article  CAS  Google Scholar 

  • Piatka, D. R., Wild, R., Hartmann, J., Kaule, R., Kaule, L., Gilfedder, B., … & Barth, J. A. (2021). Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review. Earth-Science Reviews, 220, 103729.

  • Poornima, D., Shanthia, R., Thangaradjou, T., Saravanakumara, A., & Sarangi, R. K. (2022). Statistical tools for studying the temporal variations in chlorophyll-a concentration along the Southwest Bay of Bengal waters. Indian Journal of Geo-Marine Sciences (IJMS), 50(06), 454–464.

    Google Scholar 

  • Potter, B. B., & Wimsatt, J. C. (2012). USEPA method 415.3: Quantifying TOC, DOC, and SUVA. Journal‐American Water Works Association, 104(6), E358–E369.

  • Prasath, P., & Khan, T. H. (2008). Impact of Tsunami on the heavy metal accumulation in water, Sediments and fish at Poompuhar coast, Southeast Coast of India. E-Journal of Chemistry, 5(1), 16–22.

    Article  Google Scholar 

  • Qin, B., Zhou, J., Elser, J. J., Gardner, W. S., Deng, J., & Brookes, J. D. (2020). Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environmental Science & Technology, 54(6), 3191–3198.

    Article  CAS  Google Scholar 

  • Rahman, A., Jahanara, I., & Jolly, Y. N. (2021). Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14(2), 139–148.

    Article  Google Scholar 

  • Rakib, M. R. J., Jolly, Y. N., Begum, B. A., Choudhury, T. R., Fatema, K. J., Islam, M. S., … & Idris, A. M. (2022). Assessment of trace element toxicity in surface water of a fish breeding river in Bangladesh: A novel approach for ecological and health risk evaluation. Toxin Reviews, 41(2), 420–436.

  • Ramachandran, M., Schwabe, K. A., & Ying, S. C. (2021). Shallow groundwater manganese merits deeper consideration. Environmental Science & Technology, 55(6), 3465–3466.

    Article  CAS  Google Scholar 

  • Rashid, A., Ayub, M., Khan, S., Ullah, Z., Ali, L., Gao, X., ... & Rasool, A. (2022). Hydrogeochemical assessment of carcinogenic and non-carcinogenic health risks of potentially toxic elements in aquifers of the Hindukush ranges, Pakistan: Insights from groundwater pollution indexing, GIS-based, and multivariate statistical approaches. Environmental Science and Pollution Research, 1–25.

  • Rather, R. A., Bano, H., Padder, S. A., Baba, T. R., Ara, S., Lone, F. A., & Nazir, S. (2022a). Impact of anthropogenic pressure on physico-chemical characteristics of forest soils of Kashmir Himalaya. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-022-03458-x

    Article  Google Scholar 

  • Rather, R. A., Ara, S., Sharma, S., Padder, S. A., Lone, F. A., Mir, S. A., ... & Baba, T. R. (2022b). Seasonal changes and determination of heavy metal concentrations in Veshaw River of Western Himalaya. Frontiers in Environmental Chemistry, 3, 1018576.  https://doi.org/10.3389/fenvc.2022.1018576

  • Rather, R. A., Bano, H., Perveen, K., Bukhari, N. A., Padder, S. A., Baba, T. R., Qureshi, A., Khan, N. A., Khan, A. H., & Samaraweera, H. (2022c). Antifungal potential of Colchicum luteum and determination of colchicine content using HPLC for application as a fungicide. Journal of King Saud University-Science, 101876.

  • Rather, R. A., Bano, H., Padder, S. A., Perveen, K., Al Masoudi, L. M., Alam, S. S., & Hong, S. H. (2022d). Anthropogenic impacts on phytosociological features and soil microbial health of Colchicum luteum L an endangered medicinal plant of North Western Himalaya. Saudi Journal of Biological Sciences, 29(4), 2856–2866.

    Article  Google Scholar 

  • Rather, R. A., Wani, A. W., Mumtaz, S., Padder, S. A., Khan, A. H., Almohana, A. I., … & Baba, T. R. (2022e). Bioenergy: A foundation to environmental sustainability in a changing global climate scenario. Journal of King Saud University-Science, 34(1), 101734.

  • Rather, R. A., Bano, H., Firoz, A., Mohammed, A. H., Bhat, M. A., Padder, S. A., Nafees, H., & Hakeem, K. R. (2022f). The assessment of morphological diversity of Colchicum luteum L., an economically important threatened medicinal plant of Kashmir Himalaya. Sustainability, 14(3), 1327.

  • Ribeiro, C., Couto, C., Ribeiro, A. R., Maia, A. S., Santos, M., Tiritan, M. E., … & Almeida, A. A. (2018). Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Science of the Total Environment, 639, 1381–1393.

  • Romshoo, S. A., & Rashid, I. (2012). Assessing the impacts of changing land cover and climate on Hokersar Wetland in Kashmir Himalayas. Arabian Journal of Geosciences, 7(1), 143–160.

    Article  Google Scholar 

  • Romshoo, S. A., & Rashid, I. (2014). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences, 7(1), 143–160.

    Article  Google Scholar 

  • Saha, M., Maukeeb, A. R. M., Saha, S. R., & Jahan, I. (2022). Assessment of ground water quality for drinking purpose of Jalalabad Cantonment Area in Sylhet City, Bangladesh. American Journal of Agricultural Science, Engineering, and Technology, 6(2), 87–94.

    Article  Google Scholar 

  • Shi, K., Zhang, Y., Zhu, G., Qin, B., & Pan, D. (2018). Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations. International Journal of Applied Earth Observation and Geoinformation, 68, 287–297.

    Article  Google Scholar 

  • Singh, P., Raj, A., & Yadav, B. (2022a). Impacts of agriculture-based contaminants on groundwater quality. In Sustainability of Water Resources (pp. 249–261). Springer.

  • Singh, S., Acharyya, T., & Gopinath, A. (2022b). Phytoplankton ecology in Indian Coastal Lagoons: a review. Coastal Ecosystems, 91–115.

  • Siraj, S., et al. (2010). Ecology of macrozoobenthos in Shallabugh wetland of Kashmir Himalaya, India. Journal of Ecology and the Natural Environment, 2(5), 84–91.

    CAS  Google Scholar 

  • Sithik, A. M. A., et al. (2009). Physico-chemical parameters of Holy Places Agnitheertham and Kothandaramar Temple; southeast coast of India. American-Eurasian Journal of Scientific Research, 4(2), 108–116.

    CAS  Google Scholar 

  • Sonawane, J. M., Ezugwu, C. I., & Ghosh, P. C. (2020). Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: State-of-the-art and practical applications. ACS Sensors, 5(8), 2297–2316.

    Article  CAS  Google Scholar 

  • Spray, J. F., Wagner, T., Bischoff, J., Trojahn, S., Norouzi, S., Hill, W., ... & Pereira, R. (2021). Unravelling light and microbial activity as drivers of organic matter transformations in tropical headwater rivers. Biogeosciences Discussions, 1–26.

  • Srivastava, P., et al. (2012). A study on distribution of heavy metal contamination in the vegetables using GIS and analytical technique. International Journal of Ecology and Development, 21(1), 89–99.

    Google Scholar 

  • Tabak, M., Lisowska, A., & Filipek-Mazur, B. (2020). Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. Processes, 8(7), 863.

    Article  CAS  Google Scholar 

  • Tałałaj, I. A., Biedka, P., & Bartkowska, I. (2019). Treatment of landfill leachates with biological pretreatments and reverse osmosis. Environmental Chemistry Letters, 17(3), 1177–1193.

    Article  Google Scholar 

  • Tanveer, M., Guyer, G. T., & Abbas, G. (2019). Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environment Research, 91(9), 822–829.

    Article  CAS  Google Scholar 

  • Temporetti, P., Beamud, G., Nichela, D., Baffico, G., & Pedrozo, F. (2019). The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient. Chemosphere, 228, 287–299.

    Article  CAS  Google Scholar 

  • Thakkar, M. V., Katlariwala, N. A., Pandey, N. S., Butani, H. K., Vekariya, N. D., & Gupta, A. (2019). Characterization of waste water around industrial estate of Surat, Gujarat.

  • Tutun, H., Aluç, Y., Kahraman, H. A., Sevin, S., Yipel, M., & Ekici, H. (2022). The content and health risk assessment of selected elements in bee pollen and propolis from Turkey. Journal of Food Composition and Analysis, 105, 104234.

    Article  CAS  Google Scholar 

  • Umerfaruq, M., et al. (2015). Quantitative analysis and periodicity of phytoplankton from Chnadlodia lake, Ahmedabad, Gujarat, India. Lifesciences Leaflets, 65, 72–79.

    Google Scholar 

  • Verma, P., Chandawat, D., Solanki, H. (2011) Seasonal variation in physico-chemical and phytoplankton analysis of kankaria lake by pu verma, dk chandawat and ha solanki. life sciences leaflets. 19, 842 to 854–842 to 854.

  • Wang, W., Xue, C., & Mao, X. (2020). Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules, 164, 4532–4546.

    Article  CAS  Google Scholar 

  • Wani, O. A. (2016). Mapping of nutrients status in soils of Kishtwar and Ramban districts of J&K using geographic information system (GIS). Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu.

    Google Scholar 

  • Wani, M. Y., Mehraj, S., Rather, R. A., Rani, S., Hajam, O. A., Ganie, N. A., … & Kamili, A. S. (2018a). Systemic acquired resistance (SAR): A novel strategy for plant protection with reference to mulberry. International Journal of Chemical Studies, 2, 1184–1192.

  • Wani, M. Y., Rather, R. A., Bashir, M., Shafi, S., & Rani, S. (2018b). Effect of zinc on the larval growth and quality cocoon parameters of silkworm (Bombyx mori L.): a review. International Journal of Fauna and Biological Studies, 5(4), 31–36.

  • World Health Organization. (2017). UN-Water global analysis and assessment of sanitation and drinking-water (GLAAS) 2017 report: Financing universal water, sanitation and hygiene under the sustainable development goals.

  • Yousuf, A.R. (1979). Studies on the Limnology and fisheries of lake Mansbal Kashmir.

  • Zaghloul, A., Saber, M., & El-Dewany, C. (2019). Chemical indicators for pollution detection in terrestrial and aquatic ecosystems. Bulletin of the National Research Centre, 43, 156.

    Article  Google Scholar 

  • Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., … & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University-Science, 34(1), 101653.

  • Zhang, L., Zhang, S., Lv, X., Qiu, Z., Zhang, Z., & Yan, L. (2018). Dissolved organic matter release in overlying water and bacterial community shifts in biofilm during the decomposition of Myriophyllum verticillatum. Science of the Total Environment, 633, 929–937.

    Article  CAS  Google Scholar 

  • Zhang, Q., Fisher, T. R., Buchanan, C., Gustafson, A. B., Karrh, R., Murphy, R. R., ... & Tango, P. J. (2022). Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions. Water Research, 226, 119099.

Download references

Acknowledgements

This work was supported in the form of laboratory facility by Division of Environmental Sciences and Soil Sciences SKUAST-Kashmir, India 190025.

Author information

Authors and Affiliations

Authors

Contributions

Haleema Bano: conceptualization, methodology, and overall structure of the manuscript. Shaista Malik: content organization, writing—original draft, and preparation. Rauoof Ahmad Rather: updating with the recent literature and writing—reviewing. Rauoof Ahmad Rather: writing—review and editing, diagrams, figures, visualization, and final manuscript drafting. Ikhlaq Ahmad Mir: LULC maps. Juliana Heloisa Pinê Américo-Pinheiro: data curation, writing—original draft preparation. Mohd Ashraf Bhat: supervision guidance and visualization. Afzal Husain Khan: writing—review and editing.

Corresponding author

Correspondence to Rauoof Ahmad Rather.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, H., Rather, R.A., Malik, S. et al. Effect of Seasonal Variation on Pollution Load of Water of Hokersar Wetland: a Case Study of Queen Wetland of Kashmir, J&K, India. Water Air Soil Pollut 233, 518 (2022). https://doi.org/10.1007/s11270-022-05988-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05988-w

Keywords

Navigation