Skip to main content

Advertisement

Log in

Investigating Disinfection Efficiency and Regrowth Control of Microorganisms in Urban Sewage Effluent Using Ultraviolet Radiation, Ozone, Gamma-Ray, and Dielectric Barrier Discharge Plasma

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The current study aimed to compare ultraviolet (UV), ozone, gamma radiation, and dielectric barrier discharge (DBD) plasma at a pilot scale in terms of disinfection efficiency and regrowth control of microorganisms in urban sewage effluent. For UV and ozone disinfection systems, secondary effluent was injected continuously into 1 L reactors, and various flow rates were applied to evaluate their disinfection efficiency (10, 20, and 30 mL s−1 for the former and 10, 15, and 20 mL s−1 for the latter). Gamma dosages ranging from 0.5 to 6 kGy and DBD exposure times between 5 and 25 min were selected. Disinfection efficiency was assessed based on the total coliform (TC) population, and to investigate microbial regrowth, the samples were incubated for 3 days at 22 °C and 100 rpm in the dark. Both ozone (10 mL s−1) and DBD (> 20 min) decreased TC population by only 1 log immediately after treatment, which was followed by microbial regrowth up to around pretreated levels after 3 days of storage. On the contrary, although UV (all flow rates) and gamma radiation (all dosages) completely eliminated the culturable TC after application, regrowth occurred in the UV method (all flow rates), and gamma radiation was applied in dosages lower than 4 kGy. Therefore, regrowth seems to be a crucial factor in wastewater disinfection. Overall, gamma radiation has proved to be the most effective in destroying organic compounds, inactivating pathogenic microorganisms, and controlling regrowth, thus meeting authorized limits for unrestricted irrigation, while consuming acceptable amounts of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abedi-Koupai, J., Javahery Tehrani, M., & Behfarnia, K. (2015). Improvement the quality of wastewater using porous concrete for irrigation. Journal of Soil and Water Science, 19, 93–107. (In Persian).

    Article  Google Scholar 

  • Abou-Elela, S. I., El-Sayed, M. M. H., El-Gendy, A. S., & Abou-Taleb, E. M. (2012). Comparative study of disinfection of secondary treated wastewater using chlorine, UV and ozone. Journal of Applied Sciences Research, 8(10), 5190–5197.

    CAS  Google Scholar 

  • Al-Ani, M. Y., & Al-Khalidy, F. R. (2006). Use of ionizing radiation technology for treating municipal wastewater. International Journal of Environmental Research and Public Health, 3(4), 360–368. https://doi.org/10.3390/ijerph2006030047

    Article  CAS  Google Scholar 

  • Amin, M. M., Hashemi, H., Bina, B., Attar, H. M., Farrokhzadeh, H., & Ghasemian, M. (2010). Pilot-scale studies of combined clarification, filtration, and ultraviolet radiation systems for disinfection of secondary municipal wastewater effluent. Desalination, 260(1–3), 70–78. https://doi.org/10.1016/j.desal.2010.04.065

    Article  CAS  Google Scholar 

  • Amro H, Tuffaha R, Zenati S, Jneidi M (2008) Remediation of polluted waters and wastewater by irradiation processing in Jordan. Radiation Treatment of Polluted Water and Wastewater. IAEA-TECDOC-1598:89.

  • APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater (20th ed.). American Water Works Association and Water Environmental Federation.

    Google Scholar 

  • Attri, P., Tochikubo, F., Park, J. H., Choi, E. H., Koga, K., & Shiratani, M. (2018). Impact of gamma rays and DBD plasma treatments on wastewater treatment. Science and Reports, 8(1), 2926. https://doi.org/10.1038/s41598-018-21001-z

    Article  CAS  Google Scholar 

  • Basfar, A., & Rehim, F. A. (2002). Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation. Radiation Physics and Chemistry, 65(4), 527–532. https://doi.org/10.1016/S0969-806X(02)00346-8

    Article  CAS  Google Scholar 

  • Basu, S., Page, J., & Wei, I. (2007). UV disinfection of treated wastewater effluent: Influence of color, reactivation and regrowth of coliform bacteria. Environmental Engineer: Applied Research and Practice, 4, 1–8.

    Google Scholar 

  • Bohrerova, Z., Shemer, H., Lantis, R., Impellitteri, C. A., & Linden, K. G. (2008). Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies. Water Research, 42, 2975–2982. https://doi.org/10.1016/j.watres.2008.04.001

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  • Chahal, C., van den Akker, B., Young, F., Franco, C., Blackbeard, J., & Monis, P. (2016). Pathogen and particle associations in wastewater: Significance and implications for treatment and disinfection processes. Advances in Applied Microbiology, 97, 63–119. https://doi.org/10.1016/bs.aambs.2016.08.001

    Article  CAS  Google Scholar 

  • Chai, W. S., Tan, W. G., Munawaroh, H. S., Gupta, V. K., Ho, S. H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environmental Pollution, 269, 116236. https://doi.org/10.1016/j.envpol.2020.116236

    Article  CAS  Google Scholar 

  • Chu, L., Wang, J., & Wang, B. (2010). Effects of aeration on gamma irradiation of sewage sludge. Radiation Physics and Chemistry, 79, 912–914. https://doi.org/10.1016/j.radphyschem.2010.03.007

    Article  CAS  Google Scholar 

  • Chu, L., Wang, J., & Wang, B. (2011). Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge. Biochemical Engineering Journal, 54, 34–39. https://doi.org/10.1016/j.bej.2011.01.004

    Article  CAS  Google Scholar 

  • Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. (2017). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(1), 86. https://doi.org/10.3390/su10010086

    Article  CAS  Google Scholar 

  • Drescher, A. (1999). Reactivation of UV-Disabled Microbes. World Health International Internal Publication.

    Google Scholar 

  • Du, Y., Lv, X. T., Wu, Q. Y., Zhang, D. Y., Zhou, Y. T., Peng, L., & Hu, H. Y. (2017). Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review. Journal of Environmental Sciences, 58, 51–63. https://doi.org/10.1016/j.jes.2017.01.013

    Article  CAS  Google Scholar 

  • Duarte, C. L., Sampa, M. H., Rela, P. R., Oikawa, H., Cherbakian, E. H., Sena, H. C., Abe, H., & Sciani, V. (2000). Application of electron beam irradiation combined to conventional treatment to treat industrial effluents. Radiation Physics and Chemistry, 57(3–6), 513–518. https://doi.org/10.1016/S0969-806X(99)00453-3

    Article  CAS  Google Scholar 

  • Dullemont, Y., Visser, A., Schijven, J. F., & Hiunen, W. A. (2004). Elimination capacity of slow sand filtration for microorganism determined with spiking experiment. H2O, 37(13), 22–5.

    Google Scholar 

  • El-Sayed, W. S., Ouf, S. A., & Mohamed, A. A. H. (2015). Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting. Frontiers in Microbiology, 6, 1098. https://doi.org/10.3389/fmicb.2015.01098

    Article  Google Scholar 

  • Farooq, S., Kurucz, C. N., Waite, T. D., & Cooper, W. J. (1993). Disinfection of wastewaters: High-energy electron vs gamma irradiation. Water Research, 27, 1177–1184. https://doi.org/10.1016/0043-1354(93)90009-7

    Article  CAS  Google Scholar 

  • Fernandez, A., Noriega, E., & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33(1), 24–29. https://doi.org/10.1016/j.fm.2012.08.007

    Article  CAS  Google Scholar 

  • Friedler, E., Chavez, D. F., Alfiya, Y., Gilboa, Y., & Gross, A. (2021). Impact of suspended solids and organic matter on chlorine and UV disinfection efficiency of greywater. Water, 13(2), 214. https://doi.org/10.3390/w13020214

    Article  CAS  Google Scholar 

  • Gautam, S., Shah, M. R., Sabharwal, S., & Sharma, A. (2005). Gamma irradiation of municipal sludge for safe disposal and agricultural use. Water Environment Research, 77(5), 472–479. https://doi.org/10.3390/w13020214

    Article  CAS  Google Scholar 

  • Gibson, J., Drake, J., & Karney, B. (2017). UV disinfection of wastewater and combined sewer overflows. Ultraviolet Light in Human Health, Diseases and Environment, 267–275.

  • Gomes, J., Matos, A., Gmurek, M., Quinta-Ferreira, R. M., & Martins, R. C. (2019). Ozone and photocatalytic processes for pathogens removal from water: A review. Catalysts, 9(1), 46. https://doi.org/10.3390/catal9010046

    Article  CAS  Google Scholar 

  • Gong, W. L. (2002). Long-term effects of disinfection on wastewater effluents. Doctoral dissertation, Purdue University.

  • Grinevich, V. I., Kvitkova, E. Y., Plastinina, N. A., & Rybkin, V. (2011). Application of dielectric barrier discharge for waste water purification. Plasma Chemistry and Plasma Processing, 31(4), 573–583.

    Article  CAS  Google Scholar 

  • Han, B., Kim, J. K., Kim, Y., Choi, J. S., & Jeong, K. Y. (2012). Operation of industrial-scale electron beam wastewater treatment plant. Radiation Physics and Chemistry, 81(9), 1475–1478. https://doi.org/10.1016/j.radphyschem.2012.01.030

    Article  CAS  Google Scholar 

  • Hassanshahi, N., & Karimi-Jashni, A. (2018). Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water. Ecotoxicology and Environmental Safety, 161, 683–690. https://doi.org/10.1016/j.ecoenv.2018.06.039

    Article  CAS  Google Scholar 

  • Hernández-Arias, A. N., Rodríguez-Méndez, B. G., López-Callejas, R., Alcántara-Díaz, D., Valencia-Alvarado, R., Mercado-Cabrera, A., Peña-Eguiluz, R., Muñoz-Castro, A. E., Barocio, S. R., & De la Piedad-Beneitez, A. (2012). Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor. Journal of Water and Health, 10(3), 371–379. https://doi.org/10.2166/wh.2012.132

    Article  CAS  Google Scholar 

  • Iqbal, M., Bhatti, I. A., & Ahmad, I. (2013). Photo-degradation of the methyl blue: Optimization through response surface methodology using rotatable center composite design. International Journal of Basic and Applied Sciences, 2(2), 145.

    Article  CAS  Google Scholar 

  • Janex, M. L., Savoye, P., Roustan, M., Do-Quang, Z., Laine, J. M., & Lazarova, V. (2000). Wastewater disinfection by ozone: influence of water quality and kinetics modeling. Ozone Science and Engineering, 22(2), 113–21. https://doi.org/10.1080/01919510008547215

    Article  CAS  Google Scholar 

  • Kim, K. S., Yang, C. S., & Mok, Y. S. (2013). Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chemical Engineering Journal, 219, 19–27. https://doi.org/10.1016/j.cej.2012.12.079

    Article  CAS  Google Scholar 

  • Lee, O. M., Kim, H. Y., Park, W., Kim, T. H., & Yu, S. (2015). A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. Journal of Hazardous Materials, 295, 201–208. https://doi.org/10.1016/j.jhazmat.2015.04.016

    Article  CAS  Google Scholar 

  • Li, D., Zeng, S., Gu, A. Z., He, M., & Shi, H. (2013). Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. Journal of Environmental Sciences, 25(7), 1319–1325. https://doi.org/10.1016/S1001-0742(12)60176-4

    Article  CAS  Google Scholar 

  • Lindenauer, K. G., & Darby, J. L. (1994). Ultraviolet disinfection of wastewater: Effect of dose on subsequent photoreactivation. Water Rescores, 28(4), 805–812.

    Article  CAS  Google Scholar 

  • Lu, P., Boehm, D., Bourke, P., & Cullen, P. J. (2017). Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers, 14(8), 1600207. https://doi.org/10.1002/ppap.201600207

    Article  CAS  Google Scholar 

  • Luo, L. W., Wu, Y. H., Yu, T., Wang, Y. H., Chen, G. Q., Tong, X., Bai, Y., Xu, C., Wang, H. B., Ikuno, N., & Hu, H. Y. (2021). Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Research, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474Macauley

    Article  CAS  Google Scholar 

  • Macauley, J. J., Qiang, Z., Adams, C. D., Surampalli, R., & Mormile, M. R. (2006). Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Research, 40, 2017–2026. https://doi.org/10.1016/j.watres.2006.03.021

    Article  CAS  Google Scholar 

  • Madureira, J., Pimenta, A. I., Popescu, L., Besleaga, A., Dias, M. I., Santos, P. M., Melo, R., Ferreira, I. C., Verde, S. C., & Margaça, F. M. (2017). Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity. Chemosphere, 169, 139–145. https://doi.org/10.1016/j.chemosphere.2016.11.064

    Article  CAS  Google Scholar 

  • Martínez, S. B., Pérez-Parra, J., & Suay, R. (2011). Use of ozone in wastewater treatment to produce water suitable for irrigation. Water Resources Management, 25(9), 2109–2124. https://doi.org/10.1007/s11269-011-9798-x

    Article  Google Scholar 

  • Mastanaiah, N., Johnson, J. A., & Roy, S. (2013). Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma. PLoS ONE, 8(8), 70840. https://doi.org/10.1371/journal.pone.0070840

    Article  CAS  Google Scholar 

  • Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. (2015). Global wastewater and sludge production, treatment and use. In Wastewater (pp. 15–38). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9545-6_2

  • Matthews, B., & Prieto, L. (2012). Update to the EPA Guidelines for Water Reuse. In. WEFTEC 2011 2011 Jan 1 (pp. 2907–2912). Water Environment Federation.

  • Kesari, K.K., Soni, R., Jamal, Q.M.S., Tripathi, P., Lal, J.A., Jha, N.K., Siddiqui, M.H., Kumar, P., Tripathi, V. and Ruokolainen, J., (2021). Wastewater treatment and reuse: A review of its applications and health implications. Water Air Soil Pollut, 232(5) 1–28. . 232, 208 https://doi.org/10.1007/s11270-021-05154-8

  • Michael-Kordatou, I., Andreou, R., Iacovou, M., Frontistis, Z., Hapeshi, E., Michael, C., & Fatta-Kassinos, D. (2017). On the capacity of ozonation to remove antimicrobial compounds, resistant bacteria and toxicity from urban wastewater effluents. Journal of Hazardous Materials, 323, 414–425. https://doi.org/10.1016/j.jhazmat.2016.02.023

    Article  CAS  Google Scholar 

  • Mouele, E. S. M., Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2015). Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—A critical review. Environmental Science and Pollution Research, 22(23), 18345–18362. https://doi.org/10.1007/s11356-015-5386-6

    Article  CAS  Google Scholar 

  • Naddeo, V., Landi, M., Belgiorno, V., & Napoli, R. M. (2009). Wastewater disinfection by combination of ultrasound and ultraviolet irradiation. Journal of Hazardous Materials, 168(2–3), 925–929. https://doi.org/10.1016/j.jhazmat.2009.02.128

    Article  CAS  Google Scholar 

  • Nasuhoglu, D., Isazadeh, S., Westlund, P., Neamatallah, S., & Yargeau, V. (2018). Chemical, microbial and toxicological assessment of wastewater treatment plant effluents during disinfection by ozonation. Chemical Engineering Journal, 346, 466–476. https://doi.org/10.1016/j.cej.2018.04.037

    Article  CAS  Google Scholar 

  • Nehra, V., Kumar, A., & Dwivedi, H. K. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53–68.

    Google Scholar 

  • Nguyen, D. V., Ho, P. Q., Pham, T. V., Nguyen, T. V., & Kim, L. (2019). Treatment of surface water using cold plasma for domestic water supply. Environmental Engineering Research, 24(3), 412–417. https://doi.org/10.4491/eer.2018.215

    Article  Google Scholar 

  • Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K. D., & Von Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3–4), 250–257. https://doi.org/10.1002/ppap.200900077

    Article  CAS  Google Scholar 

  • Parsafar, N., Marofi, S., Rahimi, Gh., & Marofi, H. (2015). Assessment of Pollution Index (PI) of Cd, Zn, Cu and Pb in the Soil Irrigated with Municipal Wastewater. Journal of Water and Soil Science, 25, 1–12. (In Persian).

    Google Scholar 

  • Parvin, F., Ferdaus, Z., Tareq, S. M., Choudhury, T. R., Islam, J. M., & Khan, M. A. (2015). Effect of gamma-irradiated textile effluent on plant growth. International Journal of Recycling of Organic Waste in Agriculture, 4(1), 23–30. https://doi.org/10.1007/s40093-014-0081-z

    Article  Google Scholar 

  • Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of the Total Environment, 631, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269

    Article  CAS  Google Scholar 

  • Patange, A., Lu, P., Boehm, D., Cullen, P. J., & Bourke, P. (2019). Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiology, 84, 103226. https://doi.org/10.1016/j.fm.2019.05.010

    Article  CAS  Google Scholar 

  • Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems–A review. The Science of the Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023

    Article  CAS  Google Scholar 

  • Pescod, M. B. (1992). Wastewater treatment and use in agriculture-FAO irrigation and drainage paper 47. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Potrykus, S., Mateo, S., Nieznański, J., & Fernández-Morales, F. J. (2020). The influent effects of flow rate profile on the performance of microbial fuel cells model. Energies, 13(18), 4735.

    Article  CAS  Google Scholar 

  • Rawat, K., Sharma, A., & Rao, S. (1998). Microbiological and physicochemical analysis of radiation disinfected municipal sewage. Water Research, 32, 737–740. https://doi.org/10.1016/S0043-1354(97)00220-0

    Article  CAS  Google Scholar 

  • Roshan, A., & Kumar, M. (2020). Water end-use estimation can support the urban water crisis management: A critical review. Journal of Environmental Management, 268, 110663. https://doi.org/10.1016/j.jenvman.2020.110663

    Article  Google Scholar 

  • Rudd, T., & Hopkinson, L. (1989). Comparison of disinfection techniques for sewage and sewage effluents. Water Environment Journal, 3, 612–618. https://doi.org/10.1111/j.1747-6593.1989.tb01443.x

    Article  CAS  Google Scholar 

  • Shaeri, A. M., & Rahmati A. (2012). Human’s environmental laws, regulations, criteria and standards. Department of Environment (DOE), Hak Publishing Co. (In Persian).

  • Shayegan, J., & Afshari, A. (2004). The treatment situation of municipal and industrial wastewater in Iran. Journal of Water Wastewater, 15, 58–69. (In Persian).

    Google Scholar 

  • Silva, G. H., Daniel, L. A., Bruning, H., & Rulkens, W. H. (2010). Anaerobic effluent disinfection using ozone: Byproducts formation. Bioresource Technology, 101(18), 6981–6986. https://doi.org/10.1016/j.biortech.2010.04.022

    Article  CAS  Google Scholar 

  • Silva, I., Tacão, M., Tavares, R. D., Miranda, R., Araújo, S., Manaia, C. M., & Henriques, I. (2018). Fate of cefotaxime-resistant Enterobacteriaceae and ESBL-producers over a full-scale wastewater treatment process with UV disinfection. Science of the Total Environment, 639, 1028–1037. https://doi.org/10.1016/j.scitotenv.2018.05.229

    Article  CAS  Google Scholar 

  • Sousa, J. M., Macedo, G., Pedrosa, M., Becerra-Castro, C., Castro-Silva, S., Pereira, M. F., Silva, A. M., Nunes, O. C., & Manaia, C. M. (2017). Ozonation and UV254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Journal of Hazardous Materials, 323, 434–441. https://doi.org/10.1016/j.jhazmat.2016.03.096

    Article  CAS  Google Scholar 

  • Sturrock, A. (1994). Plasma physics: An introduction to the theory of astrophysical, geophysical and laboratory plasmas. Cambridge University Press.

    Book  Google Scholar 

  • Tahri, L., Elgarrouj, D., Zantar, S., Mouhib, M., Azmani, A., & Sayah, F. (2010). Wastewater treatment using gamma irradiation: Tétouan pilot station Morocco. Radiation Physics and Chemistry, 79(4), 424–428. https://doi.org/10.1016/j.radphyschem.2009.11.008

    Article  CAS  Google Scholar 

  • Tian, J., Zhao, X., Gao, S., Wang, X., & Zhang, R. (2021). Progress in research and application of nanofiltration (nf) technology for brackish water treatment. Membranes, 11(9), 662. https://doi.org/10.3390/membranes11090662

    Article  CAS  Google Scholar 

  • Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics. d. Applied Physics, 44(47), 472001.

    Article  Google Scholar 

  • Verde, S. C., Silva, T., & Matos, P. (2016). Effects of gamma radiation on wastewater microbiota. Radiation and Environmental Biophysics, 55, 125–131. https://doi.org/10.1007/s00411-015-0617-2

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, L., Luo, H., Wang, X., Tie, J., & Ren, Z. (2020). Sterilizing processes and mechanisms for treatment of Escherichia coli with dielectric-barrier discharge plasma. Applied and Environment Microbiology, 86(1), e01907–e1919. https://doi.org/10.1128/AEM.01907-19

    Article  CAS  Google Scholar 

  • WHO Scientific Group on Health Aspects of Use of Treated Wastewater for Agriculture and Aquaculture & World Health Organization. (1989). Health guidelines for the use of wastewater in agriculture and aquaculture: report of a WHO scientific group [meeting held in Geneva from 18 to 23 November 1987]. World Health Organization. https://apps.who.int/iris/handle/10665/39401

  • Xu, P., Janex, M. L., Savoye, P., Cockx, A., & Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water Research, 36(4), 1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6

    Article  CAS  Google Scholar 

  • Younis, B. A., Mahoney, L., & Palomo, N. (2018). A novel system for water disinfection with UV radiation. Water, 10(9), 1275. https://doi.org/10.3390/w10091275

    Article  CAS  Google Scholar 

  • Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037–7044. https://doi.org/10.1007/s11356-014-3919-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hamid Ghomi and the personnel of Laser and Plasma Research Institute, Shahid Beheshti University, Iran, for their collaboration to provide facilities required for the plasma experiment. We also thank Dr. Fatemeh Azadi for her constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

Maral Khodadadi: supervision, data curation, and writing. Sanaz Khorami Pour: supervision. Hamed Askari: investigation. Elnaz Ahmadi: investigation. Fatemeh Ajili: investigation. Amir Hossein Madah: investigation.

Corresponding author

Correspondence to Maral Khodadadi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, M., Khorami-Pour, S., Askari, H. et al. Investigating Disinfection Efficiency and Regrowth Control of Microorganisms in Urban Sewage Effluent Using Ultraviolet Radiation, Ozone, Gamma-Ray, and Dielectric Barrier Discharge Plasma. Water Air Soil Pollut 233, 492 (2022). https://doi.org/10.1007/s11270-022-05965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05965-3

Keywords

Navigation