Skip to main content

Advertisement

Log in

Soybean Peroxidase-Induced Treatment of Dye-Derived Arylamines in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This research investigated the enzyme-catalyzed oxidative polymerization and precipitation/co-precipitation of the anilino compounds, p-cresidine (2-methoxy-5-methylaniline), and 4,4′-oxydianiline (ODA) suspected to be human carcinogens by the U.S. Environmental Protection Agency, as a means of treating industrial wastewater containing these pollutants. p-Cresidine is a synthetic chemical intermediate for azo dyes and pigments in the food and textile industries whereas ODA is used in the production of polyimide and poly(ester)imide resins in North America. A potentially inexpensive enzyme extracted from the soybean seed coat, soybean peroxidase (SBP), which is widely available from the agricultural commodity, was used to treat both these compounds. The optimum operating conditions such as pH, hydrogen peroxide-to-substrate concentration ratio, and the minimum SBP concentration required to achieve at least 95% SBP-catalyzed conversion of these pollutants in synthetic wastewaters were determined. Electrospray ionization mass spectrometry, employed for preliminary product determination after enzymatic conversion of the substrates, revealed the formation of azo dimers in the precipitates. A pro-forma cost analysis is presented showing the feasibility of commercialization of enzymatic treatment as an alternative, or as an adjunct, to conventional treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine, ATSDR (2009). Addendum to the toxicological profile for 1,2-diphenylhydrazine, 1–9.

  • Bodalo, A., Gomez, J. L., Gomez, E., Bastida, J., & Maximo, M. F. (2006). Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere, 63, 626–632.

    Article  CAS  Google Scholar 

  • Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2015). Combination of chemical and enzymatic treatment for efficient decolorization/degradation of textile effluent. Biochemical Engineering Journal, 93, 17–24.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Milojević-Rakić, M., Janošević-Ležaić, A., Luginbühl, S., & Walde, P. (2017). Enzymatic oligomerization and polymerization of arylamines: State of the art and perspectives. Chemical Papers, 71, 199–242.

    Article  CAS  Google Scholar 

  • Cordova Villegas, L. G., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157–167.

    Article  CAS  Google Scholar 

  • Dunford, H.B. (1999). Heme peroxidases (pp. 1–36, 270–319, 414–454). New York: Wiley.

  • Ekici, P., Leupold, G., & Parlar, H. (2001). Degradability of selected azo dye metabolites in activated sludge systems. Chemosphere, 44, 721–728.

    Article  CAS  Google Scholar 

  • Fogler, H. S. (2004). Elements of chemical reaction engineering. New Jersey: Prentice Hall Publications.

    Google Scholar 

  • Gao, J., Thong, Z., Wang, K. Y., & Chung, T. S. (2017). Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes. Journal of Membrane Science, 541, 413–424.

    Article  CAS  Google Scholar 

  • García, J. M., Jones, G. O., Virwani, K., McCloskey, B. D., Boday, D. J., ter Huurne, G. M., Horn, H. W., Coady, D. J., Bintaleb, A. M., Alabdulrahman, A. M. S., Alsewailem, F., Almegren, H. A. A., & Hedrick, J. L. (2014). Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science, 344, 732–735.

    Article  CAS  Google Scholar 

  • Gholami-Borujeni, F., Mahvi, A. H., Nasseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Applied Biochemistry and Biotechnology, 165, 1274–1284.

    Article  CAS  Google Scholar 

  • Gomori, G. (1955). Preparation of buffers for use in enzyme studies. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (pp. 138–146). New York: Academic Press.

    Google Scholar 

  • Henriksen, A., Mirza, O., Indiani, C., Teilum, K., Smulevich, G., Welinder, K. G., & Gajhede, M. (2001). Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Science, 10(1), 108–115.

    Article  CAS  Google Scholar 

  • Ibrahim, M. S., Ali, H. I., Taylor, K. E., Biswas, N., & Bewtra, J. K. (2001). Enzyme-catalyzed removal of phenol from refinery wastewater: Feasibility studies. Water Environment Research, 73, 165–172.

    Article  CAS  Google Scholar 

  • Kamal, J. K. A., & Behere, D. V. (2002). Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry, 41, 9034–9042.

    Article  CAS  Google Scholar 

  • Lloret, S. M., Legua, C. M., & Falco, P. C. (2002). Preconcentration and dansylation of aliphatic amines using C-18 solid-phase packings—Application to the screening analysis in environmental water samples. Journal of Chromatography A, 978, 59–69.

    Article  Google Scholar 

  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17, 990–1003.

    Article  CAS  Google Scholar 

  • Malik Altahir, B., Feng, W., Jasim, H. H., Taylor, K. E., Biswas, N., Bewtra, J. K., & Jasim, S. A. A. (2015). Soybean peroxidase-catalysed removal of benzidines from water. Journal of Environmental Engineering and Science, 10(4), 73–80.

    Article  Google Scholar 

  • May, K., Nemeshwaree, B., Aurelie, C., & Vincent, N. (2018). Bio-Fenton and bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochemistry, 64, 237–247.

    Article  CAS  Google Scholar 

  • Mazloum, S., Mousa Al-Ansari, M., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2016). Additive effect on soybean peroxidase-catalyzed removal of anilines from water. Environmental Engineering Science, 33(2), 133–139.

    Article  CAS  Google Scholar 

  • Mousa Al-Ansari, M., Steevensz, A., Al-Aasm, N., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2009). Soybean peroxidase-catalyzed removal of phenylenediamines and benzenediols from water. Enzyme and Microbial Technology, 45(4), 253–260.

    Article  CAS  Google Scholar 

  • Mousa Al-Ansari, M., Steevensz, A., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2010). Soybean peroxidase-catalyzed removal of an aromatic thiol, 2-mercaptobenzothiazole, from water. Water Environment Research, 82, 2285–2289.

    Article  CAS  Google Scholar 

  • Nissum, M., Schiodt, C. B., & Welinder, K. G. (2001). Reactions of soybean peroxidase and hydrogen peroxide pH 2.4-12.0, and veratryl alcohol at pH 2.4. Biochimica et Biophysica Acta, 1545(1–2), 339–348.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409, 4141–4166.

    Article  CAS  Google Scholar 

  • Otero, P., Saha, S. K., Hussein, A., Barron, J., & Murray, P. (2017). Simultaneous determination of 23 azo dyes in paprika by gas chromatography-mass spectrometry. Food Analytical Methods, 10, 876–884.

    Article  Google Scholar 

  • Patapas, J., Mousa Al-Ansari, M., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2007). Removal of dinitrotoluenes from water via reduction with iron and peroxidase-catalyzed oxidative polymerization: A comparison between Arthromyces ramosus peroxidase and soybean peroxidase. Chemosphere, 67, 1485–1491.

    Article  CAS  Google Scholar 

  • Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61, 121–139.

    Article  CAS  Google Scholar 

  • ROC (n.d.-a) (Report on Carcinogens) for 4,4′-Oxydianiline. 14th Edition. https://ntp.niehs.nih.gov/ntp/roc/content/profiles/oxydianiline.pdf. Accessed 28 Apr 2018.

  • ROC (n.d.-b) (Report on Carcinogens) for p-Cresidine. 14th Edition. https://ntp.niehs.nih.gov/ntp/roc/content/profiles/cresidine.pdf. Accessed 28 Apr 2018.

  • Sánchez, M. D. L., Santos, P. M., Sappó, C. P., Pavón, J. L. P., & Cordero, B. M. (2014). Micro extraction by packed bed adsorbent and salting-out-assisted liquid-liquid extraction for the determination of aromatic amines formed from azo dyes in textiles. Talanta, 119, 375–384.

    Article  CAS  Google Scholar 

  • Sessa, D. J., & Anderson, R. L. (1981). Soybean peroxidases: Purification and some properties. Journal of Agricultural and Food Technology, 29(5), 960–965.

    Article  CAS  Google Scholar 

  • Steevensz, A., Madur, S., Mousa Al-Ansari, M., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2013). A simple lab-scale extraction of soybean hull peroxidase shows wide variation among cultivars. Industrial Crops and Products, 48, 13–18.

    Article  CAS  Google Scholar 

  • Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014a). Soybean peroxidase for industrial wastewater treatment: A mini review. Journal of Environmental Engineering and Science, 9(3), 181–186.

    Article  Google Scholar 

  • Steevensz, A., Madur, S., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014b). Crude soybean hull peroxidase treatment of phenol in synthetic and real wastewater: Enzyme economy enhanced by Triton X-100. Enzyme and Microbial Technology, 55, 65–71.

    Article  CAS  Google Scholar 

  • TOXNET® (n.d.) Toxicology Data Network. Accessed 28 Apr 2018.

  • Trading Economics (2017). United States Inflation Rate, (2017): https://tradingeconomics.com/united-states/inflation-cpi. Accessed 28 Apr 2018.

  • U.S. Environmental Protection Agency (2018). https://cfpub.epa.gov/ncea/iris/search/index.cfm. Accessed 28 Apr 2018.

  • Wu, J., Taylor, K. E., Bewtra, J. K., & Biswas, N. (1993). Optimization of the reaction conditions for enzymatic removal of phenol from wastewater in the presence of polyethylene glycol. Water Research, 27, 1701–1706.

    Article  CAS  Google Scholar 

  • Zanoni, T. B., Lizier, T. M., Assis, M. D., Zanoni, M. V. B., & de Oliveira, D. P. (2013). CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III. Food and Chemical Toxicology, 57, 217–226.

    Article  CAS  Google Scholar 

  • Zhu, Y., & Shi, Y. (2013). Facile Cu(I)-catalyzed oxidative coupling of anilines to azo compounds and hydrazines with diaziridinone under mild conditions. Organic Letters, 15(8), 1942–1945.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing financial support. Sincere thanks to Dr. J.K. Bewtra (University of Windsor) for his valuable suggestions. The support provided by the following scholarships: Ontario Graduate Scholarship, Sustainable Engineering Faculty Scholarship, and the University of Windsor Doctoral Entrance Scholarship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Taylor, K.E. & Biswas, N. Soybean Peroxidase-Induced Treatment of Dye-Derived Arylamines in Water. Water Air Soil Pollut 229, 283 (2018). https://doi.org/10.1007/s11270-018-3936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3936-5

Keywords

Navigation