Skip to main content
Log in

Eco-physiological and Antioxidant Responses of Holm Oak (Quercus ilex L.) Leaves to Cd and Pb

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Plants of the urban environment are exposed to a wide range of pollutants, including heavy metals. This research studies in situ the eco-physiological and antioxidant responses of holm oak (Q. ilex) leaves to Pb and Cd to assess the mechanisms of metal tolerance in this species, widely used as biomonitor. Leaves of plants grown at parks and roadsides were analyzed for photosynthetic activity, Pb and Cd concentration in tissues and cell-free extracts, thiol groups, D1 and Rubisco protein content, ascorbic acid (AsA) amount, and catalase (CAT) activity. The main results evidenced that Cd concentration was higher in leaves collected at the park out from the downtown; whereas Pb was most abundant in leaves sampled at the roadside nearby the highway. Pb in cell-free extracts was higher in park than in roadside leaves. Although Cd in the leaf tissues was twofold lower than Pb, it was more abundant than Pb in cellular extracts deprived of all particulate matter. Leaves responded to different concentration of Cd and Pb modulating some eco-physiological and biochemical traits, roadside leaves showed reduced leaf lamina, higher content of photosynthetic pigments, hydrogen peroxide, and AsA, as well as higher CAT activity compared to park leaves. In the roadside leaves, a stress condition for photosynthetic apparatus can be hypothesized on the basis of the decline of photochemical activity, the increase of NPQ, and the reduction of Rubisco and D1 protein content. The elevated presence of thiol groups in these leaves suggests a possible role of Pb and Cd in activation of antioxidant responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfani, A., Baldantoni, D., Maisto, G., Bartoli, G., & Virzo De Santo, A. (2000). Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex within the urban area of Naples. Environmental Pollution, 109, 119–129.

    Article  CAS  Google Scholar 

  • Alfani, A., Maisto, G., Prati, M. V., & Baldantoni, D. (2001). Leaves of Quercus ilex L. as biomonitors of PAHs in the air of Naples (Italy). Atmospheric Environment, 35, 3553–3559.

    Article  CAS  Google Scholar 

  • Alfani, A., De Nicola, F., Maisto, G., & Prati, M. V. (2005). Long-term PAH accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmospheric Environment, 39, 307–314.

    Article  CAS  Google Scholar 

  • Allen, R. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology, 107, 1049–1054.

    Article  CAS  Google Scholar 

  • Arena, C., De Maio, A., De Nicola, F., Santorufo, L., Vitale, L., & Maisto, G. (2014). Assessment of eco-physiological performance of Quercus ilex L. leaves in urban area by an integrated approach. Water Air & Soil Pollution, 225, 1–12.

    Article  CAS  Google Scholar 

  • Barber, D. J. W., & Thomas, J. K. (1978). Reactions of radicals with lecithin bilayers. Radiation Research, 74, 51–65.

    Article  CAS  Google Scholar 

  • Bargagli, R. (1995). The elemental composition of vegetation and the possible incidence of soil contamination of samples. Science of the Total Environment, 176, 121–128.

    Article  CAS  Google Scholar 

  • Bargagli, R. (1998). Trace elements in terrestrial plants. Berlin: Springer-Verlag.

    Google Scholar 

  • Bilger, W., & Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis L. Photosynthesis Research, 25, 173–185.

    Article  CAS  Google Scholar 

  • Castro-Díez, P., Villar-Salvador, P., Pérez-Rontomé, C., Maestro-Martínez, M., & Montserrat-Martí, G. (1997). Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11, 127–134.

    Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  • Cornelissen, J. H. C., Lavorel, S., Garnier, E., Dıaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Steege, H., Morgan, H. D., Van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). Handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380.

    Article  Google Scholar 

  • Cosio, C., Martinoia, E., & Keller, K. (2004). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology, 134, 716–772.

    Article  CAS  Google Scholar 

  • Cvetanovska, L., Klincharska-Jovanovska, I., Dimeska, G., Srbinoska, M., & Cvetanovska, A. (2010). Anatomic and physiological disorder after intoxication with heavy metals in tobacco (Nicotiana tabacum L.) second Balkan conference on biology, Plovdiv. Biotechnology & Biotechnological Equipment, 24, 4–9.

    Article  Google Scholar 

  • Dabrowska, G., Mierek-Adamska, A., & Goc, A. (2013). Characterization of Brassica napus L. metallothionein genes (BMTs) expression in organs and during seed germination. Australian Journal of Crop Science, 7, 1324–1332.

    Google Scholar 

  • De Nicola, F., Maisto, G., Prati, M. V., & Alfani, A. (2005). Temporal variations in PAH concentrations in Quercus ilex L. (holm oak) leaves in an urban area. Chemosphere, 61, 432–440.

    Article  Google Scholar 

  • De Nicola, F., Maisto, G., Prati, M. V., & Alfani, A. (2008). Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environmental Pollution, 153, 376–383.

    Article  Google Scholar 

  • De Nicola, F., Lancellotti, C., Prati, M. V., Maisto, G., & Alfani, A. (2011). Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmospheric Environment, 45, 1428–1433.

    Article  Google Scholar 

  • De Nicola, F., Alfani, A., & Maisto, G. (2014). Polycyclic aromatic hydrocarbon contamination in an urban area assessed by Q. ilex leaves and soil. Environmental Science and Pollution Research, 21, 7616–7623.

    Article  Google Scholar 

  • De Nicola, F., Baldantoni, D., Maisto, G., & Alfani, A. (2017). Heavy metal and polycyclic aromatic hydrocarbon concentrations in Quercus ilex L. leaves fit an a priori subdivision in site typologies based on human management. Environmental Science and Pollution Research, 24(13), 11911–11918.

    Article  Google Scholar 

  • Demmig-Adams, B., Gilmore, A., & Adams, W. W. (1996). In vivo functions of carotenoids in higher plants. Federation of American Societies for Experimental Biology Journal, 10, 403–412.

    CAS  Google Scholar 

  • Dey, S. K., Dey, J., Patra, S., & Pothal, D. (2007). Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Brazilian Journal of Plant Physiology, 19, 53–60.

    Article  CAS  Google Scholar 

  • Durand, T. C., Sergeant, K., Planchon, S., Carpin, S., Label, P., Morabito, D., Hausman, J. F., & Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics, 10, 349–368.

    Article  CAS  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdora, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defence response. The Scientific World Journal, 2015, 1–18. https://doi.org/10.1155/2015/756120.

    Article  Google Scholar 

  • Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87–92.

    Article  CAS  Google Scholar 

  • Gonçalves, J. F., Becker, A. G., Cargnelutti, D., Tabaldi, A. L., Pereira, L. B., Battisti, V., Spanevello, R. M., Morsch, V. M., Nicoloso, F. T., & Schetinger, M. R. C. (2007). Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian Journal of Plant Physiology, 19, 223–232.

    Article  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  Google Scholar 

  • Hossain, Z., & Komatsu, S. (2013). Contribution of proteomic studies towards understanding plant heavy metal stress response. Frontiers Plant Science, 3, 1–12.

    Article  Google Scholar 

  • Hossain, M. A., Piyatida, P., Teixeira da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37. https://doi.org/10.1155/2012/872875.

    Article  Google Scholar 

  • Jarvis, S. C., Joser, L. H. P., & Hopper, M. D. (1976). Cd uptake from solution by plants and its transport from roots to shoots. Plant and Soil, 44, 179–191.

    Article  CAS  Google Scholar 

  • Kieffer, P., Dommes, J., Hoffmann, L., Hausman, J. F., & Renaut, J. (2008). Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics, 8, 2514–2530.

    Article  CAS  Google Scholar 

  • Kieffer, P., Planchon, S., Oufir, M., Ziebel, J., Dommes, J., Hoffmann, L., Hausman, J. F., & Renaut, J. (2009). Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. Journal of Proteome Research, 8, 400–417.

    Article  CAS  Google Scholar 

  • Krall, J. P., & Edwards, G. E. (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Plant Physiology, 86, 180–187.

    Article  CAS  Google Scholar 

  • Kumar-Nanda, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science Technology, 29, 1232–1238.

    Article  Google Scholar 

  • Kupper, H., Kupper, F., & Spiller, M. (1998). In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research, 58, 123–133.

    Article  CAS  Google Scholar 

  • Kupper, H., Setlik, I., Spiller, M., Kupper, F. C., & Prasil, O. (2002). Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38, 429–441.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Maisto, G., Alfani, A., Baldantoni, D., De Marco, A., & Virzo De Santo, A. (2004a). Trace metals in the soil and in Q. ilex L. leaves at anthropic and remote sites of the Campania region of Italy. Geoderma, 122, 269–279.

    Article  CAS  Google Scholar 

  • Maisto, G., De Nicola, F., Prati, M. V., & Alfani, A. (2004b). Leaf and soil PAH accumulation in an urban area of the Mediterranean region (Naples-Italy). Fresenius Environmental Bulletin, 13, 1263–1268.

    CAS  Google Scholar 

  • Maisto, G., De Nicola, F., Iovieno, P., Prati, M. V., & Alfani, A. (2006). PAHs and trace elements in volcanic urban and natural soils. Geoderma, 136, 20–27.

    Article  CAS  Google Scholar 

  • Maisto, G., Santorufo, L., & Arena, C. (2013). Heavy metal accumulation in leaves affects physiological performance and litter quality of Quercus ilex L. Journal of Plant Nutrition and Soil Science, 176, 776–784.

    CAS  Google Scholar 

  • Monaci, F., Mori, F., Lanciotti, E., Grechi, D., & Bargagli, R. (2000). Biominitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environmental Pollution, 107, 321–327.

    Article  CAS  Google Scholar 

  • Monni, S., Uhlig, C., Hansen, E., & Magel, E. (2001). Ecophysiological responses of Empetrum nigrum to heavy metals pollution. Environmental Pollution, 112, 121–129.

  • Patsikka, E., Kairavuo, M., Sersen, F., Aro, E. M., & Tyystjarvi, E. (2002). Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiology, 129, 1359–1367.

    Article  CAS  Google Scholar 

  • Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicology, 94, 56–61.

    Article  CAS  Google Scholar 

  • Sergiev, I., Alxieva, V., & Karanov, E. (1997). Effect of spermone, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes rendus de l'Academie bulgare des Sciences, 51, 121–124.

    Google Scholar 

  • Seyyednejad, S. M., Niknejad, M., & Koochak, H. (2011). A review of some different effects of air pollution on plants. Research Journal of Environmental Sciences, 5, 302–309.

    Article  CAS  Google Scholar 

  • Sharma, P., & Dubey, R. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  • Steinnes, E., & Friedland, A. J. (2006). Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environmental Reviews, 14, 169–186.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31. https://doi.org/10.1155/2011/939161.

    Article  Google Scholar 

  • Thormalley, P. J., & Vasak, M. (1985). Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochimica et Biophysica Acta, 827, 36–44.

    Article  Google Scholar 

  • Tiwari, S., Agrawal, M., & Marshall, F. M. (2006). Evaluation of ambient air pollution impact on carrot plants at a sub urban site using open top chambers. Environmental Monitoring and Assessment, 119, 15–30.

    Article  CAS  Google Scholar 

  • Tripathi, B. N., & Gaur, J. P. (2004). Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta, 219, 397–404.

    Article  CAS  Google Scholar 

  • Tripathi, A. K., & Gautam, M. (2007). Biochemical parameters of plants as indicators of air pollution. Journal of Environmental Biology, 28, 127–132.

    CAS  Google Scholar 

  • Ugolini, F., Tognetti, R., Raschia, A., & Bacci, L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban Forestry & Urban Greening, 12, 576–584.

    Article  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181, 759–776.

    Article  CAS  Google Scholar 

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645–655.

    Article  CAS  Google Scholar 

  • Waalkes, M. (2000). Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79, 241–244.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Pi, L. Y., Chen, X., Chakrabarty, P. K., Jiang, J., Lopez De Leon, A., Liu, G-Z, Li, L., Benny, U., Oard, J., Ronald, P. C. & Songa, W-Y. (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. The Plant Cell, 18, 3635–3646.

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

  • Yang, Z., & Chu, C. (2011). Towards understanding plant response to heavy metal stress. In A. Shanker (Ed.), Abiotic stress in plants – Mechanisms and adaptations (pp. 59–78). Shanghai: In Tech.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Arena.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arena, C., Santorufo, L., Cataletto, P.R. et al. Eco-physiological and Antioxidant Responses of Holm Oak (Quercus ilex L.) Leaves to Cd and Pb. Water Air Soil Pollut 228, 459 (2017). https://doi.org/10.1007/s11270-017-3638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3638-4

Keywords

Navigation