Skip to main content
Log in

Influence of the Herbicide Facet® on Corticosterone Levels, Plasma Metabolites, and Antioxidant System in the Liver and Muscle of American Bullfrog Tadpoles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study sought to analyze the effects of the herbicide quinclorac on body condition indices; plasma levels of corticosterone, glucose, and uric acid; activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST); and levels of lipid peroxidation (LPO) in the liver and caudal muscle of American bullfrog (Rana catesbeiana) tadpoles. After a 7-day acclimation period, animals were exposed to four concentrations (0.05, 0.1, 0.2, and 0.4 μg/L) of herbicide for a further 7 days. Then, blood samples were obtained, animals were euthanized, and the liver and caudal muscle resected. Levels of corticosterone and uric acid were reduced in tadpoles exposed to the highest concentration of herbicide, and this reduction was preceded by an increase in glucose levels. In the liver tissue, LPO was increased after exposure to 0.1 μg/L quinclorac, followed by a return to baseline values in the remaining concentrations; this response was accompanied by an increase in SOD and GST and reduction of tissue protein levels. At the highest concentration, a reduction in activity of all enzymes was observed, with protein returning to control-like levels. In muscle, SOD and GST levels declined with exposures up to 0.1 g/L and 0.4 μg/L, respectively, whereas LPO decreased in animals exposed to 0.1 μg/L. These results suggest participation of nonenzymatic antioxidant defenses, as demonstrated by the reduction in uric acid levels. Exposure to the range of quinclorac concentrations used in this study slowed body mass and length gain, reduced corticosterone levels, and modulated antioxidant defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Albinati, R. C. B., Costa, G. B., & Neves, A. P. (1998). Efeito da densidade populacional de girinos de (Rana catesbeiana, Shaw, 1802) sobre o tempo de metamorfose e peso do ímagos. Arquivos da Escola de Medicina Veterinária da UFBA, 19, 75–86.

    Google Scholar 

  • Alford, R. A., & Richards, S. J. (1999). Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics, 30, 133–165.

    Article  Google Scholar 

  • ASTM. (1998). Standard guide for conducting the frog embryo teratogenesis assay—Xenopus (FETAX) (pp. 790–805). Philadelphia: ASTM.

    Google Scholar 

  • Bagarinao, T., & Thayaparan, K. (1986). The length-weight relationship, food habits and condition factor of wild juvenile milkfish in Sri Lanka. Aquaculture, 55, 241–246.

    Article  Google Scholar 

  • Banerjee, B. D., Seth, V., Bhattacharya, A., Pasha, S. T., & Chakraborty, A. K. (1999). Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology Letters, 107, 33–47.

    Article  CAS  Google Scholar 

  • Barata, C., Varo, I., Navarro, J. C., Arun, S., & Porte, C. (2005). Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology Part C, 140, 175–186.

    Google Scholar 

  • Barbosa, K. B. F., Costa, N. M. B., Alfenas, R. C. G., De Paula, S. O., Minim, V. P. R., & Bressan, J. (2010). Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, 23(4), 629–643.

    Article  CAS  Google Scholar 

  • Blaustein, A. R. (1994). Chicken little or Nero’s fiddle? A perspective on declining amphibian populations. Herpetologica, 50, 85–97.

    Google Scholar 

  • Blaustein, A. R., & Johnson, P. T. J. (2003). The complexity of deformed amphibians. Frontiers in Ecology and the Environment, 1, 87–94.

    Article  Google Scholar 

  • Bohrer, M. B. C. (1995). Biomonitoramento das lagoas de tratamento terciário dos efluentes líquidos industriais (Sitel) do Pólo Petroquímico do Sul, Triunfo, RS, através da comunidade zooplantônica (p. 470). Tese de Doutorado: Departamento de Ciências, Universidade Federal de São Carlos, São Carlos.

    Google Scholar 

  • Boone, M. D., Bridges, C. M., & Rothermel, B. B. (2001). Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide. Oecologia, 129, 518–524.

    Article  Google Scholar 

  • Boone, M. D., Semlitsch, R. D., Little, E. E., & Doyle, M. C. (2007). Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs and fish. Ecological Applications, 17, 229–301.

    Article  Google Scholar 

  • Boveris, A., & Cadenas, E. (1982). Production of superoxide radicals and hydrogen peroxide in mitochondria. In L. W. Oberley (Ed.), Superoxide dismutase (Vol. 2, pp. 15–30). Florida: CRC Press.

    Google Scholar 

  • Boveris, A., & Chance, B. (1973). The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochemical Journal, 34, 707–717.

    Article  Google Scholar 

  • Boyland, E., & Chasseaud, L. F. (1969). The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Advances in Enzymology and Related Areas of Molecular Biology, 32, 173–219.

    CAS  Google Scholar 

  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.

    Article  CAS  Google Scholar 

  • Bueno-Guimarães, H. M., Ferreira, C. M., Garcia, M. L., & Saldiva, P. H. (2001). Tadpole epithelium test: potential use of Rana catesbeiana histopathologic epithelial changes to evaluate aquatic pollution. Bulletin of the Environmental Contamination and Toxicology, 67, 202–209.

    Article  Google Scholar 

  • Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., & Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian peninsula: a practical approach. Science of the Total Environment, 247, 295–311.

    Article  CAS  Google Scholar 

  • Costa, M. A. G. (2004). Poluição ambiental: herança para gerações futuras (p. 254). Orium: Santa Maria.

    Google Scholar 

  • Costa, M. J., Monteiro, D. A., Oliveira-Neto, A. L., Rantin, F. T., & Kalinin, A. L. (2008). Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original®. Ecotoxicology, 17, 153–116.

    Article  CAS  Google Scholar 

  • Costantini, D. (2008). Oxidative stress in ecology and evolution: lessons from avian studies. Ecology Letters, 11, 1238–1251.

    Google Scholar 

  • Costantini, D. (2014). Oxidative stress and hormesis in evolutionary ecology and physiology (p. 348). Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Dornelles, M. F., & Oliveira, G. T. (2014). Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Archives of Environmental Contamination and Toxicology, 66, 415–429.

    Article  CAS  Google Scholar 

  • Dornelles, M. F., & Oliveira, G. T. (2015). Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environmental Science and Pollution Research, 23(2), 1610–1620.

    Article  Google Scholar 

  • Endemann, M., Hristoforoglu, K., Stauber, T. E., & Wilhelm, E. (2002). Assessment of age related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biologia Plantarum, 44(3), 339–345.

    Article  Google Scholar 

  • Ezemonye, L., & Tongo, I. (2009). Lethal and sublethal effects of atrazine to amphibian larvae. Jordan Journal of Biological Sciences, 2(1), 29–36.

    Google Scholar 

  • Fang, J. K. H., Au, D. W. T., Wu, R. S. S., Chan, A. K. Y., Mok, H. O. L., & Shin, P. K. S. (2009). The use of physiological indices in rabbitfish Siganus oramin for monitoring of coastal pollution. Marine Pollution Bulletin, 58, 1229–1235.

    Article  CAS  Google Scholar 

  • Ferreira, C. M., Lombardi, J. V., Machado-Neto, J. G., Bueno-Guimarães, H. M., Soares, S. R., & Saldiva, P. H. (2004). Effects of copper oxychloride in Rana catesbeiana tadpoles: toxicological and bioaccumulative aspects. Bulletin of the Environmental Contamination and Toxicology, 73, 465–470.

    Article  CAS  Google Scholar 

  • Fonseca, L. L., Sánchez, C., Santos, H., & Voit, E. O. (2011). Complex coordination of multi-scale cellular responses to environmental stress. Molecular BioSystems, 7(3), 731–741.

    Article  CAS  Google Scholar 

  • Fordham, C. L., Tessari, J. D., Ramsdell, H. S., & Keefe, T. J. (2001). Effects of malathion on survival, growth, development and equilibrium posture of bullfrog tadpoles (Rana catesbeiana). Environmental Toxicology and Chemistry, 20(1), 179–184.

    Article  CAS  Google Scholar 

  • Freitas, J. S., & Alemida, E. A. (2016). Antioxidant defense system of tadpoles (Eupemphix nattereri) exposed to changes in temperature and pH. Zoological Science, 33(2), 186–194.

  • Galbraith, D. W., Harkins, K. R., Maddon, J. M., Ayres, N. M., Sharma, D. P., & Firoozabady, E. (1983). Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science, 220, 1049–1051.

    Article  CAS  Google Scholar 

  • Georgieva, N. V. (2005). Oxidative stress as a factor of disrupted ecological oxidative balance in biological systems—a review. Bulgarian Journal of Veterinary Medicine, 8(1), 1–11.

    Google Scholar 

  • Gervasi, S. S., Urbina, J., Hua, J., Chestnut, T., Relyea, R. A., & Blaustein, A. R. (2013). Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth, 10(2), 166–171.

    Article  Google Scholar 

  • Glantzounis, G. K., Tsimoyiannis, E. C., Kappas, A. M., & Galaris, D. A. (2005). Uric acid and oxidative stress. Current Pharmaceutical Design, 11, 4145–4151.

    Article  CAS  Google Scholar 

  • Goulet, B. N., & Hontela, A. (2003). Toxicity of cadmium, endosulfan, and atrazine in adrenal steroidogenic cells of two amphibian species, Xenopus laevis and Rana catesbeiana. Environmental Toxicology, 22(9), 2106–2113.

    Article  CAS  Google Scholar 

  • Habig, W. H., & Jakoby, W. B. (1981). Glutathione S-transferases (rat and human). Methods in Enzymology, 77, 218–234.

    Article  CAS  Google Scholar 

  • Harris, R. N. (1999). The anuran tadpole—evolution and maintenance. In R. W. McDiarmid & R. Altig (Eds.), Tadpoles—the biology of anuran larvae (pp. 280–294). Chicago: University of Chicago Press.

    Google Scholar 

  • Houlihan, J. E., Findlay, C. S., Schmidt, B. R., Meyers, A. H., & Kuzmin, S. L. (2001). Quantitative evidence for global amphibian population declines. Nature, 404, 752–755.

    Article  Google Scholar 

  • IBGE. (2014). Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br (acessed 20.10.2014).

  • IRGA. (2014). Instituto Rio Grandense do Arroz. http://www.irga.rs.gov.br (acessed 20.10.2014).

  • Isaksson, C. (2010). Pollution and its impact on wild animals: a meta-analysis on oxidative stress. EcoHealth, 7, 342–350.

    Article  Google Scholar 

  • Jena, S. D., Behera, M., Dandapat, J., & Mohanty, N. (2009). Nonenzymatic antioxidant status and modulation of lipid peroxidation in the muscles of Labeo rohita by sublethal exposure of CuSO4. Veterinary Research Communications, 33, 421–429.

    Article  CAS  Google Scholar 

  • Jones, L., Gossett, R. D., Banks, S. W., & McCallum, M. L. (2010). Antioxidant defense system in tadpoles of the American bullfrog (Lithobates catesbeianus) exposed to paraquat. Journal of Herpetology, 44, 222–228.

    Article  Google Scholar 

  • Kavitha, P., & Rao, V. (2007). Oxidative stress and locomotor behavior response as biomarkers for assessing recovery status of mosquito Wsh, Gambusia aynis after lethal effect of an organophosphate pesticide, monocrotophos. Pesticide Biochemistry and Physiology, 87, 182–188.

    Article  CAS  Google Scholar 

  • Kehrer, J. P. (1993). Free radicals as mediators of tissue injury and disease. Critical Reviews in Toxicology, 34, 21–48.

    Article  Google Scholar 

  • Kiesecker, J. M., Blaustein, A. R., & Belden, L. K. (2001). Complex causes of amphibian population declines. Nature, 410, 681–684.

    Article  CAS  Google Scholar 

  • Lambropoulou, D. A., Sakkas, V. A., Hela, D. G., & Albanis, T. A. (2002). Application of solid phase microextraction in the monitoring of priority pesticides in the kalamas river (N.W. Greece). Journal of Chromatography, 963(1–2), 107–116.

    Article  CAS  Google Scholar 

  • Landis, W. G., & Yu, M. H. (2004). Introduction to environmental toxicology: impacts of chemicals upon ecological systems (3rd ed.p. 487). Florida: CRC Press.

    Google Scholar 

  • Lima, E. S., & Abdalla, D. S. P. (2001). Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, 37, 293–303.

    CAS  Google Scholar 

  • Limón-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research, 674, 137–147.

    Article  Google Scholar 

  • Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42(8), 656–666.

    Article  CAS  Google Scholar 

  • Llesuy, S. F., Milei, J., Molina, H., Boveris, A., & Milei, S. (1985). Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori, 71(3), 241–249.

    CAS  Google Scholar 

  • Mann, R. M., Hyne, R. V., Choung, C. B., & Wilson, S. P. (2009). Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution, 157, 2903–2927.

    Article  CAS  Google Scholar 

  • Marchesan, E., Zanella, R., Avila, L. A., Camargo, E. R., Machado, S. L. O., & Macedo, V. R. M. (2007). Rice herbicide monitoring in two Brazilian river during the rice growing season. Scientia Agricola, 64, 131–137.

    Article  CAS  Google Scholar 

  • McElroy S. (2006). Registration of the new active ingredient, Quinclorac (chemical code 128974), contained in the new pesticide product. Ortho Weed B Gon Max Plus Crabgrass Control (EPA Reg. No. 239–2689). http://pmep.cce.cornell.edu/profiles/herb-growthreg/naa-rimsulfuron/quinclorac/ortho_reg_1006.pdf. Accessed 9 Feb 2017.

  • Meirelles, C. E., Oliveira, V. L., Garcia, E. G., Filho, J. P. A., Lima, V. E., Santos, H. N. G., Puga, F. R., & Almeida, W. F. (1991). Agrotóxicos riscos e prevenção (p. 130). Fundacentro: São Paulo.

    Google Scholar 

  • Modesto K.A. (2009) Efeitos de dois herbicidas à base de glifosato para um peixe neotropical, com enfoque nos biomarcadores bioquímicos. Dissertação (Mestrado). Universidade Estadual de Londrina: Paraná, 69 p.

  • Moraes, B. S., Loro, V. L., Glusczak, L., Pretto, A., Menezes, C., Marchezan, E., & Machado, S. O. (2007). Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere, 68(8), 1597–1601.

    Article  CAS  Google Scholar 

  • Morsy, G. M., El-Ala, K. S. A., & Ali, A. A. (2016). Studies on fate and toxicity of nanoalumina in male albino rats: oxidative stress in the brain, liver and kidney. Toxicology and Industrial Health, 32(2), 200–214.

    Article  CAS  Google Scholar 

  • Moura, M. A. M., Franco, D. A. S., & Matallo, M. B. (2008). Impacto de herbicidas sobre os recursos hídricos. Revista Tecnologia & Inovação Agropecuária, 1, 142–153.

    Google Scholar 

  • Navarro-Martín, L., Lanctôt, C., Jackman, P., Park, B. J., Doe, K., Paulid, B. D., & Trudeau, V. L. (2014). Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frogs (Lithobates sylvaticus) tadpoles. I: chronic laboratory exposures to VisionMax®. Aquatic Toxicology, 154, 278–290.

    Article  Google Scholar 

  • Nunes, A., Silva, A., & Soares, E. (2011). The use of hepatic and somatic indices and histological information to characterize the reproductive dynamics of Atlantic sardine Sardina pilchardus from the Portuguese coast. Marine and Coastal Fisheries: Management, and Ecosystem Science, 3, 127–144.

    Article  Google Scholar 

  • Nunes, B. S., Travasso, R., Gonçalves, F., & Castro, B. B. (2015). Biochemical and physiological modifications in tissues of Sardina pilchardus: spatial and temporal patterns as a baseline for biomonitoring studies. Frontiers in Environmental Science, 3, 1–14.

    Article  Google Scholar 

  • Oruç, E. Ö., & Usta, D. (2007). Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology, 23, 45–55.

    Article  Google Scholar 

  • Ossana, N. A., Castañé, P. M., & Salibián, A. (2013). Use of Lithobates catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista River (Argentina). Archives of Environmental Contamination and Toxicology, 65(3), 486–497.

    Article  CAS  Google Scholar 

  • Paetow, L. J., McLaughlin, J. D., Pauli, B. D., & Marcogliese, D. J. (2013). Mortality of American bullfrog tadpoles Lithobates catesbeianus infected by Gyrodactylus jennyae and experimentally exposed to Batrachochytrium dendrobatidis. Journal of Aquatic Animal Health, 25(1), 15–26.

    Article  Google Scholar 

  • Paulino, M. G., Sakuragui, M. M., & Fernandes, M. (2012). Effects of atrazine on the gill cells and ionic balance in a neotropical fish, Prochilodus lineatus. Chemosphere, 86, 1–7.

    Article  CAS  Google Scholar 

  • Peakall, D. B. (1992). Animal biomarkers as pollution indicators (p. 291). London: Chapman & Hall.

    Book  Google Scholar 

  • Peres, F., & Moreira, J. C. (2003). É veneno ou é remédio? Agrotóxicos, saúde e ambiente (p. 384). Rio de Janeiro: Fiocruz.

    Book  Google Scholar 

  • Persch, T. S. P., Weimer, R. N., Freitas, B. S., & Oliveira, G. T. (2017). Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup®, Primoleo®, and Facet®. Chemosphere. doi:10.1016/j.chemosphere.2017.01.092.

  • Rodrigues, N. R. & Almeida, F. S. (1998). Guia de herbicidas (pp. 137–142). 4th ed. Londrina: IAPAR.

  • Saygili, E. I., Konukoglu, D., Papila, S., & Aksay, T. (2003). Levels of plasma vitamin E, vitamin C, TBARS and cholesterol in male patients with colorectal tumors. Biochemistry (Moscow), 68(3), 325–328.

    Article  CAS  Google Scholar 

  • Silva, D. R. O., Avila, L. A., Agostinetto, D., Dal, M. T., Oliveira, E., Zanella, R., & Noldin, J. A. (2009). Monitoramento de agrotóxicos em águas superficiais de regiões orizícolas no sul do Brasil. Ciência Rural, 39, 2383–2389.

    Article  Google Scholar 

  • Sol, S. Y., Johnson, L. L., Boyd, D., Olson, O. P., Lomax, D. P., & Collier, T. K. (2008). Relationships between anthropogenic chemical contaminant exposure and associated changes in reproductive parameters in male English sole (Parophrys vetulus) collected from Hylebos Waterway, Puget Sound, Washington. Archives of Environmental Contamination and Toxicology, 55, 627–638.

    Article  CAS  Google Scholar 

  • Squadrito, G. L., Cueto, R., Splenser, A. E., Valavanidis, A., Zhang, H., Uppu, R. M., & Pryor, W. A. (2000). Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Archives of Biochemistry and Biophysics, 376, 333–337.

    Article  CAS  Google Scholar 

  • Takada, Y., & Noguchi, T. (1983). The degradation of urate in liver peroxisomes. The Journal of Biological Chemistry, 258(8), 4762–4764.

    CAS  Google Scholar 

  • Tsangaris, C., Kormas, K., Strogyloudi, E., Hatzianestis, I., Neofitou, C., Andral, B., & Galgani, F. (2010). Multiple biomarkers of pollution effects in caged mussels on the Greek coastline. Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 151(3), 369–378.

    CAS  Google Scholar 

  • Van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.

    Article  CAS  Google Scholar 

  • Vazzoler, A. E. A. M. (1996). Biologia da reprodução de peixes teleósteos: teoria e prática (p. 196). Eduem: Maringá.

    Google Scholar 

  • Vieira, M. I. (1993). Rã-touro gigante: características e reprodução (p. 80). São Paulo: Aquaroli Books.

    Google Scholar 

  • Vitt, L. J., & Caldwell, J. P. (2009). Herpetology: an introductory biology of amphibians and reptiles (3rd ed.p. 697). London: Elsevier.

    Google Scholar 

  • Wright, M. L., Guertin, C. J., Duffy, J. L., Szatkowski, M. C., Visconti, R. F., & Alves, C. D. (2003). Developmental and diel profiles of plasma corticosteroids in bullfrog: Rana catesbeiana. Comparative Biochemistry and Physiology Part A, 135, 585–595.

    Article  Google Scholar 

  • Yang, T. H., Lai, N. C., Graham, J. B., & Somero, G. N. (1992). Respiratory, blood, and heart enzymatic adaptations of Sebastolobus alascanus (Scorpaenidae: Teleostei) in the oxygen minimum zone: a comparative study. Biological Bulletin, 183, 490–499.

    Article  CAS  Google Scholar 

  • Yin, X., Jiang, S., Yu, J., Zhu, G., Wu, H., & Mao, C. (2014). Effects of spirotetramat on the acute toxicity, oxidative stress, and lipid peroxidation in Chinese toad (Bufo bufo gargarizans) tadpoles. Environmental Toxicology and Pharmacology, 37, 1229–1235.

    Article  CAS  Google Scholar 

  • Yoshikawa, T., & Naito, Y. (2002). What is oxidative stress? Journal of the Japan Medical Association, 124(11), 1549–1553.

    Google Scholar 

  • Zanella, R., Primel, E. G., Machado, S. L. O., Gonçalves, F. F., & Marchezan, E. (2002). Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromatographia, 55, 573–577.

    Article  CAS  Google Scholar 

  • Zanette, J., Monserrat, J. M., & Bianchini, A. (2015). Biochemical biomarkers in barnacles Balanus improvisus: pollution and seasonal effects. Marine Environmental Research, 103, 74–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Graduate Program in Zoology for the financial support provided. We also thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for awarding a grant to the first author and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for awarding a Level 2 Investigator grant to the corresponding author (process no. 307303/20128) during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guendalina Turcato Oliveira.

Ethics declarations

Animals were transported in plastic bags to the Conservation Physiology laboratory of Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), where all experimental procedures were conducted in accordance with an Institutional Animal Care and Use Committee authorization (permit no. 14/00384).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Coltro, M., da Silva, P.R., Valgas, A.A.N. et al. Influence of the Herbicide Facet® on Corticosterone Levels, Plasma Metabolites, and Antioxidant System in the Liver and Muscle of American Bullfrog Tadpoles. Water Air Soil Pollut 228, 241 (2017). https://doi.org/10.1007/s11270-017-3404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3404-7

Keywords

Navigation