Skip to main content
Log in

Fate of Silver Nanoparticles in Constructed Wetlands—a Microcosm Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nano-enabled materials are produced at growing volumes which increases the likelihood of nanoparticles being released into the environment. Constructed wetlands (CWs) are likely to receive wastewater containing nanoparticles leaching from products during usage. Therefore, we investigate the retention of silver nanoparticles (Ag-NPs) in microcosms simulating CWs treating domestic wastewater. The effects of aeration and organic matter content on the Ag-NP removal efficiencies are studied in particular. CWs remove most of the Ag (80–90%) and the largest fraction of Ag is found in/on the biofilm. Detailed electron microscopy analyses suggest that Ag-NPs are transformed into Ag2S in all microcosm experiments. The good correlation between total suspended solids (TSS) and the Ag concentration measured in the effluent indicates that Ag-NPs are bound to the solids in the effluent. Aeration of the microcosms does not affect the release of Ag-NPs from the systems but increasing organic matter leads to increased amounts of Ag passing the CWs, correlating with the increased release of TSS from the CWs. These results suggest that Ag-NPs are retained with the (suspended) solids in CWs and that the removal efficiency of TSS is an important factor determining the discharge of Ag-NPs from CWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous. (n.d.). The project of emerging nanotechnologies consumer product inventory. Retrieved May 2, 2016, from http://www.nanotechproject.org/cpi.

  • Auvinen, H., Sepúlveda, V. V., Rousseau, D. P. L., & Du Laing, G. (2016). Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands. Environmental Science and Pollution Research. doi:10.1007/s11356-016-7459-6.

    Google Scholar 

  • Behra, R., Sigg, L., Clift, M. J. D., Herzog, F., Minghetti, M., Johnston, B., & Rothen-Rutishauser, B. (2013). Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of the Royal Society, Interface / the Royal Society, 10(87), 20130396. doi:10.1098/rsif.2013.0396.

    Article  Google Scholar 

  • Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11), 4133–4139. doi:10.1021/es7032718.

    Article  CAS  Google Scholar 

  • Blaser, S. A., Scheringer, M., MacLeod, M., & Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Science of the Total Environment, 390(2–3), 396–409. doi:10.1016/j.scitotenv.2007.10.010.

    Article  CAS  Google Scholar 

  • Button, M., Auvinen, H., Koetsem, F. V., Hosseinkhani, B., Rousseau, D., Weber, K. P., & Du, G. (2016). Susceptibility of constructed wetland microbial communities to silver nanoparticles: a microcosm study. Ecological Engineering, 97, 476–485. doi:10.1016/j.ecoleng.2016.10.033.

    Article  Google Scholar 

  • Colvin, V. L. (2004). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 22(6), 760–760. doi:10.1038/nbt0604-760c.

    Article  CAS  Google Scholar 

  • Doiron, K., Pelletier, E., & Lemarchand, K. (2012). Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study. Aquatic Toxicology, 124–125, 22–27. doi:10.1016/j.aquatox.2012.07.004.

    Article  Google Scholar 

  • Du Laing, G., Tack, F. M. G., & Verloo, M. G. (2003). Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Analytica Chimica Acta, 497(1–2), 191–198. doi:10.1016/j.aca.2003.08.044.

    Article  Google Scholar 

  • Fan, J., Zhang, B., Zhang, J., Ngo, H. H., Guo, W., Liu, F., & Wu, H. (2013). Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresource Technology, 141, 117–122. doi:10.1016/j.biortech.2013.03.077.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed.). Boca Raton: CRC Press. doi:10.1201/9781420012514.

    Google Scholar 

  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., & Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology, 45(9), 3902–3908. doi:10.1021/es1041892.

    Article  CAS  Google Scholar 

  • Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., & Mueller, E. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47(12), 3866–3877. doi:10.1016/j.watres.2012.11.060.

    Article  CAS  Google Scholar 

  • Kim, B., Park, C. S., Murayama, M., & Hochella, M. F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology, 44(19), 7509–7514. doi:10.1021/es101565j.

    Article  CAS  Google Scholar 

  • Levard, C., Reinsch, B. C., Michel, F. M., Oumahi, C., Lowry, G. V., & Brown, G. E. (2011). Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environmental Science and Technology, 45(12), 5260–5266. doi:10.1021/es2007758.

    Article  CAS  Google Scholar 

  • Li, L., Hartmann, G., & Schuster, M. (2013). Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environmental Science & Technology, 47, 7317–7323.

    CAS  Google Scholar 

  • Liu, J., Pennell, K. G., & Hurt, R. H. (2011). Kinetics and mechanisms of nanosilver oxysulfidation. Environmental Science and Technology, 45(17), 7345–7353. doi:10.1021/es201539s.

    Article  CAS  Google Scholar 

  • Lombi, E., Donner, E., Taheri, S., Tavakkoli, E., Jämting, A. K., McClure, S., & Vasilev, K. (2013). Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 176, 193–197. doi:10.1016/j.envpol.2013.01.029.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J., Reinsch, B. C., Bryant, L. D., & Wiesner, M. R. (2012a). Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environmental Science and Technology, 46(13), 7027–7036. doi:10.1021/es204608d.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012b). Transformations of nanomaterials in the environment. Environmental Science & Technology, 46(13), 6893–6899. doi:10.1021/es300839e.

    Article  CAS  Google Scholar 

  • Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., & Lowry, G. V. (2014). Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science & Technology, 48(1), 104–112. doi:10.1021/es403646x.

    Article  CAS  Google Scholar 

  • Mitrano, D. M., Rimmele, E., Wichser, A., Erni, R., Height, M., & Nowack, B. (2014). Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano, 8(7), 7208–7219. doi:10.1021/nn502228w.

    Article  CAS  Google Scholar 

  • Nivala, J., Hoos, M. B., Cross, C., Wallace, S., & Parkin, G. (2007). Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Science of the Total Environment, 380(1–3), 19–27. doi:10.1016/j.scitotenv.2006.12.030.

    Article  CAS  Google Scholar 

  • OECD. (2001). OECD guidelines for the testing of chemicals - 303A Activated sludge units. OECD Publishing. doi:9789264070424.

  • Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: a review for the biennium 2008–2010. Journal of Hazardous Materials, 186(1), 1–15. doi:10.1016/j.jhazmat.2010.11.020.

    Article  CAS  Google Scholar 

  • Ratte, H. T. (1999). Bioaccumulation and toxicity of silver compounds: a review. Environmental Toxicology and Chemistry, 18(1), 89–108. doi:10.1002/etc.5620180112.

    Article  CAS  Google Scholar 

  • Reinsch, B. C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K. B., & Lowry, G. V. (2012). Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environmental Science and Technology, 46(13), 6992–7000. doi:10.1021/es203732x.

    Article  CAS  Google Scholar 

  • Van Koetsem, F., Geremew, T. T., Wallaert, E., Verbeken, K., Van der Meeren, P., & Du Laing, G. (2015). Fate of engineered nanomaterials in surface water: factors affecting interactions of Ag and CeO2 nanoparticles with (re)suspended sediments. Ecological Engineering, 80, 140–150. doi:10.1016/j.ecoleng.2014.07.024.

    Article  Google Scholar 

  • Van Koetsem, F., Verstraete, S., Wallaert, E., Verbeken, K., Van Der Meeren, P., Rinklebe, J., & Du Laing, G. (2016). Use of filtration techniques to study environmental fate of engineered metallic nanoparticles: factors affecting filter performance. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2016.05.098.

    Google Scholar 

  • Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1–17. doi:10.1016/j.ecoleng.2008.08.016.

    Article  Google Scholar 

  • Wagner, T. (2016). ij-particlesizer: ParticleSizer 1.0.3 Zenodo. doi:10.5281/zenodo.56457.

  • Zhang, L., Zhang, L., Liu, Y., Shen, Y., Liu, H., & Xiong, Y. (2010). Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination, 250(3), 915–920. doi:10.1016/j.desal.2008.04.062.

Download references

Acknowledgements

We thank Ghent University for the PhD grant of H. Auvinen. We are thankful to the European Cooperation in Science and Technology (COST) for facilitating co-operation between research institutes and would like to thank the members of the COST Action ES1205 (Engineered nanomaterials from wastewater treatment & stormwater to rivers) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannele Auvinen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auvinen, H., Kaegi, R., Rousseau, D.P.L. et al. Fate of Silver Nanoparticles in Constructed Wetlands—a Microcosm Study. Water Air Soil Pollut 228, 97 (2017). https://doi.org/10.1007/s11270-017-3285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3285-9

Keywords

Navigation