Skip to main content
Log in

Removal of Phenolic Compounds from Aqueous Solutions Using Sludge-Based Activated Carbons Prepared by Conventional Heating and Microwave-Assisted Pyrolysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sludge-derived activated carbons (ACs) were prepared by conventional heating and microwave pyrolysis. The ACs were characterized using several analytical and functional techniques and used for removal of six phenolic compounds from aqueous solutions. The adsorbents exhibited similar features and possessed hydrophobic surfaces. The ACs were assigned mesoporous materials, with specific surface areas of up to 641 and 540 m2 g−1 for CAC-500 and MAC-980, respectively. The preliminary results indicated that phenol removal onto the ACs increased in the order: m-cresol < phenol < o-cresol < 2-chrorophenol < 2-nitrophenol < hydroquinone. Hydroquinone exhibited the highest adsorption capacity and was chosen to continue the remaining part of the experimental work—kinetic and isothermal studies. The adsorption kinetic and isotherm data were well described by the Avrami fractionary order and Redlich–Peterson models, respectively. The maximum amounts (Q max) of hydroquinone adsorbed at 25 °C were too high, reaching 1218.3 and 1202.1 mg g−1 for CAC-500 and MAC-980, respectively. The mechanism of adsorption was proposed in this work, and it was suggested that donor–acceptor complex and ππ interactions play major roles in the adsorption process. The adsorbents were also tested on simulated effluents. The two ACs displayed good efficiency for the treatment of industrial simulated effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ailijiang, N., Chang, J., Wu, Q., Li, P., Liang, P., Zhang, X., & Huang, X. (2016). Phenol degradation by suspended biomass in aerobic/anaerobic electrochemical reactor. Water, Air, and Soil Pollution, 227, 233. doi:10.1007/s11270-016-2924-x.

    Article  Google Scholar 

  • Arellano-Cárdenas, S., Gallardo-Velázquez, T., Osorio-Revilla, G., López-Cortéz, M. S., & Gómez-Pere, B. (2005). Adsorption of phenol and dichlorophenols from aqueous solutions by porous clay heterostructure (PCH). Journal of the Mexican Chemical Society, 49, 287–291.

    Google Scholar 

  • Babich, H., & Davis, D. L. (1981). Phenol: a review of environmental and health risks. Regulatory Toxicology and Pharmacology, 1, 90–109.

    Article  CAS  Google Scholar 

  • Balbuenat, P. B., & Gubbins, K. E. (1993). Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir, 9, 1801–1814.

    Article  Google Scholar 

  • Calvete, T., Lima, E. C., Cardoso, N. F., Dias, S. L. P., & Ribeiro, E. S. (2010). Removal of brilliant green dye from aqueous solutions using home made activated carbons. Clean: Soil, Air, Water, 38, 521–532.

    CAS  Google Scholar 

  • Chen, H., Chen, D., & Hong, L. (2015). Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char. Applied Energy, 156, 767–775.

    Article  CAS  Google Scholar 

  • Davi, M. L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Research, 33, 3213–3219.

    Article  CAS  Google Scholar 

  • Dos Reis, G. S., Adebayo, M. A., Lima, E. C., Sampaio, C. H., & Prola, L. D. T. (2016a). Activated carbon from sewage sludge for preconcentration of copper. Analytical Letters, 49, 541–555.

    Article  Google Scholar 

  • Dos Reis, G. S., Sampaio, C. H., Lima, E. C., & Wilhelm, M. (2016b). Preparation of novel adsorbents based on combinations of polysiloxanes and sewage sludge to remove pharmaceuticals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 304–315.

    Article  Google Scholar 

  • Dos Reis, G. S., Wilhelm, M., Silva, T. C. A., Rezwan, K., Sampaio, C. H., Lima, E. C., & Souza, S. M. A. G. U. (2016c). The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis. Applied Thermal Engineering, 93, 590–597.

    Article  Google Scholar 

  • Duana, L., Wanga, H., Suna, Y., & Xie, X. (2016). Biodegradation of phenol from wastewater by microorganism immobilized in bentonite and carboxymethyl cellulose gel. Chemical Engineering Communications, 203(7), 948–956.

    Article  Google Scholar 

  • Dursun, A. Y., & Kalayci, C. S. (2005). Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. Journal of Hazardous Materials, 123, 151–157.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). ϋber die adsorption in lösungen. Zeitschrift fuer Physikalische Chemie, 57A, 385–470.

    Google Scholar 

  • Georgina, J., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2016). Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 4, 266–275.

    Article  Google Scholar 

  • He, Q., Chen, Q., Lü, M., & Liu, X. (2014). Adsorption behavior of rhodamine B on UiO-66. Chinese Journal of Chemical Engineering, 22, 1285–1290.

    Article  CAS  Google Scholar 

  • Hemmati, M., Nazari, N., Hemmati, A. S., & Shirazian, S. (2015). Phenol removal from wastewater by means of nanoporous membrane contactors. Journal of Industrial and Engineering Chemistry, 21, 1410–1416.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136, 681–689.

    Article  CAS  Google Scholar 

  • Kumar, D., & Gaur, J. P. (2011). Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology, 102, 633–640.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Leng, L., Yuana, X., Huang, H., Shao, J., Wanga, H., Chen, X., & Zeng, G. (2015). Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Applied Surface Science, 346, 223–231.

    Article  CAS  Google Scholar 

  • Lima, E. C., Fenga, P. G., Romero, J. R., & de Giovani, W. F. (1998). Electrochemical behaviour of [Ru(4,4′-Me2bpy)2(PPh3)(H2O)](ClO4)2 in homogeneous solution and incorporated into carbon paste electrodes: application to oxidation of benzylic compounds. Polyhedron, 17, 313–318.

    Article  CAS  Google Scholar 

  • Lima, E. C., Barbosa-Jr, F., Krug, F. J., & Guaita, U. (1999). Tungsten–rhodium permanent chemical modifier for lead determination in digests of biological materials and sediments by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 14, 1601–1605.

    Article  CAS  Google Scholar 

  • Lima, E. C., Barbosa, R. V., Brasil, J. L., & Santos, A. H. D. P. (2002). Evaluation of different permanent modifiers for the determination of arsenic, cadmium and lead in environmental samples by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 17, 1523–1529.

    Article  CAS  Google Scholar 

  • Lima, E. C., Brasil, J. L., & Santos, A. H. D. P. (2003). Evaluation of Rh, Ir, Ru, W-Rh, W-Ir, and W-Ru as permanent modifiers for the determination of lead in ashes, coals, sediments, sludges, soils, and freshwaters by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 484, 233–242.

    Article  CAS  Google Scholar 

  • Lina, Q. H., Cheng, H., & Chena, G. Y. (2012). Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. Journal of Analytical and Applied Pyrolysis, 93, 113–119.

    Article  Google Scholar 

  • Liu, Y., & Liu, Y. J. (2008). Review: biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229–242.

    Article  CAS  Google Scholar 

  • Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157, 348–356.

    Article  CAS  Google Scholar 

  • Lopes, E. C. N., dos Anjos, F. S. C., Vieira, E. F. S., & Cestari, A. R. (2003). An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. Journal of Colloid and Interface Science, 263, 542–547.

    Article  CAS  Google Scholar 

  • Muppalla, R., Jewrajka, S. K., & Reddy, A. V. R. (2015). Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Separation and Purification Technology, 143, 125–134.

    Article  CAS  Google Scholar 

  • Ozdemir, I., Şahin, M., Orhan, R., & Erdem, M. (2015). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125, 200–206.

    Article  Google Scholar 

  • Paisio, C. E., Talano, M. A., Gonzalez, O. S., Magallanes-Noguera, C., Kurina-Sanzb, M., & Agostinia, E. (2016). Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1.4. Environmental Technology, 37, 2379–2390.

    Article  CAS  Google Scholar 

  • Prenzel, T., Guedes, T. L. M., Schlüter, F., Wilhelm, M., & Rezwan, K. (2015). Tailoring surfaces of hybrid ceramics for gas adsorption—from alkanes to CO2. Separation and Purification Technology, 129, 80–89.

    Article  Google Scholar 

  • Prola, L. D. T., Acayanka, E., Lima, E. C., Umpierres, C. S., Vaghetti, J. C. P., Santos, W. O., Laminsi, S., & Djifon, P. T. (2013a). Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Industrial Crops and Products, 46, 328–340.

    Article  CAS  Google Scholar 

  • Prola, L. D. T., Machado, F. M., Bergmann, C. P., de Souza, F. E., Gally, C. R., Lima, E. C., Adebayo, M. A., Dias, S. L., & Calvete, T. (2013b). Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. Journal of Environmental Management, 130, 166–175.

    Article  CAS  Google Scholar 

  • Qu, X., Tian, M., Liao, B., & Chen, Z. (2010). Enhanced electrochemical treatment of phenolic pollutants by an effective adsorption and release process. Electrochimica Acta, 55, 5367–5374.

    Article  CAS  Google Scholar 

  • Rawajfih, Z., & Nsour, N. (2006). Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant. Journal of Colloid and Interface Science, 298, 39–49.

    Article  CAS  Google Scholar 

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Chemical Physics, 63, 1024–1027.

    Article  CAS  Google Scholar 

  • Ribas, M. C., Adebayo, M. A., Prola, L. D. T., Lima, E. C., Cataluña, R., Feris, L. A., Puchana-Rosero, M. J., Machado, F. M., Pavan, F. A., & Calvete, T. (2014). Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chemical Engineering Journal, 248, 315–326.

    Article  CAS  Google Scholar 

  • Rueda-Márquez, J. J., Pintado-Herrera, M. G., Martín-Díaz, M. L., Acevedo-Merino, A., & Manzano, M. A. (2015). Combined AOPs for potential wastewater reuse or safe discharge based on multi-barrier treatment (microfiltration-H2O2/UV-catalytic wet peroxide oxidation). Chemical Engineering Journal, 270, 80–90.

    Article  Google Scholar 

  • Saucier, C., Adebayo, M. A., Lima, E. C., Cataluña, R., Thue, P. S., Prola, L. D. T., Puchana-Rosero, M. J., Machado, F. M., Pavan, F. A., & Dotto, G. L. (2015). Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. Journal of Hazardous Materials, 289, 18–27.

    Article  CAS  Google Scholar 

  • Shang, H., Lu, Y., & Zhao, F. (2015). Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Advances, 5, 75728–75734.

    Article  CAS  Google Scholar 

  • Sin, J.-C., Lam, S.-M., Lee, K. T., & Mohamed, A. R. (2015). Preparation of cerium-doped ZnO hierarchical micro/nanospheres with enhanced photocatalytic performance for phenol degradation under visible light. Journal of Molecular Catalysis A: Chemical, 409, 1–10.

    Article  CAS  Google Scholar 

  • Suresh, S., Srivastava, V. C., & Mishra, I. M. (2011). Study of catechol and resorcinol adsorption mechanism through granular activated carbon: characterization, pH and kinetic study. Separation Science and Technology, 46, 1750–1766.

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069.

    Article  CAS  Google Scholar 

  • Thue, P. S., Adebayo, M. A., Lima, E. C., Sieliechi, J. M., Machado, F. M., Dotto, G. L., Vaghetti, P. S., & Dias, S. L. P. (2016). Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. Journal of Molecular Liquids, 223, 1067–1080.

    Article  CAS  Google Scholar 

  • Torres, J. A., Chagas, P. M. B., Silva, M. C., dos Santos, C. D., & Corrêaa, A. D. (2016). Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase. Environmental Technology, 37, 1288–1295.

    Article  CAS  Google Scholar 

  • Wang, H., Guan, Q., Li, J., & Wang, T. (2014). Phenolic wastewater treatment by an electrocatalytic membrane reactor. Catalysis Today, 236, 121–126.

    Article  Google Scholar 

  • Wang, Y., Zhou, L., Duan, X., Sun, H., Tin, E. L., Jin, W., & Wang, S. (2015). Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. Catalysis Today, 258, 576–584.

    Article  CAS  Google Scholar 

  • Wang, B., Shui, Y., Ren, H., & He, M. (2016). Research of combined adsorption-coagulation process in treating petroleum refinery effluent. Environmental Technology. doi:10.1080/09593330.2016.1197319.

    Google Scholar 

  • Zhang, B., Li, F., Wu, T., Sun, Y., & Li, Y. (2015a). Adsorption of p-nitrophenol from aqueous solutions using nanographite oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 464, 78–88.

    Article  CAS  Google Scholar 

  • Zhang, D., Huo, P., & Liu, W. (2015b). Behavior of phenol adsorption on thermal modified activated carbon. Chinese Journal of Chemical Engineering, 24, 446–452.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank The National Council for Scientific and Technological Development (CNPq, Brazil) and The Coordination of Improvement of Higher Education Personnel (CAPES, Brazil) for financial support, fellowships, grants, and technical support. We also thank Chemaxon for giving an academic research license for the Marvin Sketch software, version 16.11.1.0 (2016, http://www.chemaxon.com) used for pharmaceutical physical–chemical properties. We also thank The Centre of Electron Microscopy (CME-UFRGS) for the use of the SEM microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaydson S. dos Reis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, G.S., Adebayo, M.A., Sampaio, C.H. et al. Removal of Phenolic Compounds from Aqueous Solutions Using Sludge-Based Activated Carbons Prepared by Conventional Heating and Microwave-Assisted Pyrolysis. Water Air Soil Pollut 228, 33 (2017). https://doi.org/10.1007/s11270-016-3202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3202-7

Keywords

Navigation