Skip to main content

Advertisement

Log in

Root Morphology and Growth Regulated by Mineral Nutrient Absorption in Rice Roots Exposed to Simulated Acid Rain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid rain caused a severe loss on agricultural productivity, aggravating the challenge for achieving sustainable food production to feed the increasing globe population. To clarify the mechanism on adaptation of rice root to acid rain, we studied the root morphology and growth regulated by nutrient absorption under hydroponic conditions. Our results show that acid rain (pH 5.0 or 3.5) increased the density of root hair and root volume by increasing concentrations of K+, Na+, and Ca2+ in rice roots, and the root dry weight was increased. However, strong acid rain (pH 2.5) decreased the root length, surface area, volume, and number of root tips by decreasing the concentrations of K+, Na+, and Mg2+ in rice root, and fresh and dry weight were both decreased. After a 5-day recovery, the root morphology of rice seedlings treated with acid rain (pH 5.0 or 3.5) was recovered to the control levels, and the concentrations of K+, Na+, Ca2+, and Mg2+ also had no difference from the control (p < 0.05). However, the root growth treated with strong acid rain (pH 2.5) was still lower than the control because the inhibition on root activity and hydrolytic activity of plasma membrane H+-ATPase might have exceeded the self-regulating capacity of rice seedlings, and the absorption of mineral nutrient could not sustain the growth. Hence, we concluded that the adaption of root morphology of rice seedlings to acid rain was related to regulation of mineral nutrient absorption in rice root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, A., Ahmed, I., & Badr-uz-Zaman. (2002). Nutritional effect of calcium on growth and ionic concentration of wheat under saline conditions. Pakistan Journal of Agricultural Sciences, 39(4), 258–264.

    Google Scholar 

  • Alvarez-Pizarro, J. C., Gomes-Filho, E., Prisco, J. T., Grossi-De-Sa, M. F., & Rocha Fragoso, R. D. (2014). Plasma membrane H+-ATPase in sorghum roots as affected by potassium deficiency and nitrogen sources. Biologia Plantarum, 58(3), 507–514.

    Article  CAS  Google Scholar 

  • Bo, L. I., Tian, X. L., Wang, G. W., Pan, F., & Li, Z. H. (2008). Heterosis of root growth in maize (Zea mays L.) seedling under water stress. Acta Agronomica Sinica, 34(4), 662–668.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  • Cramer, G. R., Lynch, J., Läuchli, A., & Epstein, E. (1987). Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiology, 83(3), 510–516.

    Article  CAS  Google Scholar 

  • Ding, Y. C., & Xu, G. H. (2011). Low magnesium with high potassium supply changes sugar partitioning and root growth pattern prior to visible magnesium deficiency in leaves of rice (Oryza sativa L.). American Journal of Plant Sciences, 02(4), 601–608.

    Article  CAS  Google Scholar 

  • El-Mallakh, T. V., Gao, Y. L., & El-Mallakh, R. S. (2014). The effect of simulated acid rain on growth of root systems of Scindapsus aureus. International Journal of Plant Biology, 5(1), 13–15.

    Article  Google Scholar 

  • Fageria, N. K., & Moreira, A. (2011). The role of mineral nutrition on root growth of crop plants. Advances in Agronomy, 110, 251–331.

    Article  CAS  Google Scholar 

  • Fan, W. G., & Yang, H. Q. (2007). Nutrient deficiency affects root architecture of young seedlings of Malus hupehensis (Pamp) Rehd. under conditions of artificial medium cultivation. Agricultural Sciences in China, 6(3), 296–303.

    Article  CAS  Google Scholar 

  • Foehse, D., & Jungk, A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil, 74(3), 359–368.

    Article  CAS  Google Scholar 

  • Forino, L. M. C., Castiglione, M. R., Bartoli, G., Balestri, M., Andreucci, A., & Tagliasacchi, A. M. (2012). Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata. Journal of Hazardous Materials, s235–236(20), 271–278.

    Article  Google Scholar 

  • Grossnickle, S. C. (2005). Importance of root growth in overcoming planting stress. New Forest, 273–294(2), 273–294.

    Article  Google Scholar 

  • Hallmark, W. B., & Barber, S. A. (1984). Root growth and morphology, nutrient uptake, and nutrient status of early growth of soybeans as affected by soil P and K1. Agronomy Journal, 76(2), 209–212.

    Article  Google Scholar 

  • Halušková, L. U., Valentovičová, K., Huttová, J., Mistrík, I., & Tamás, L. (2009). Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiology and Biochemistry, 47(11–12), 1069–1074.

    Article  Google Scholar 

  • Huang, X. H., Zhou, Q., & Zhang, X. W. (2000). The stress effect of acid rain on root growth in plant. Argo-Environmental Protection, 19(4), 234–235.

    Google Scholar 

  • Islam, E., Yang, X., Li, T., Liu, D., Jin, X. F., & Meng, F. H. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 147(3), 806–816.

    Article  CAS  Google Scholar 

  • Jing, C., Wei, L., & Fang, G. (2010). Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: a case study in southwest China. Journal of Environmental Monitoring, 12(10), 1799–1806.

    Article  Google Scholar 

  • Klobus, G., & Buczek, J. (1995). The role of plasma membrane oxidoreductase activity in proton transport. Journal of Plant Physiology, 146(1–2), 103–107.

    Article  CAS  Google Scholar 

  • Larssen, T., Lydersen, E., Tang, D. G., He, Y., Gao, J. X., Liu, H. Y., et al. (2006). Acid rain in China. Environmental Science & Technology, 40(2), 418–425.

    Article  CAS  Google Scholar 

  • Larsson, C., Widell, S., & Kjellbom, P. (1987). Preparation of high-purity plasma membranes. Methods in Enzymology, 148, 558–568.

    Article  CAS  Google Scholar 

  • Lequeue, G., & Draye, X. (2014). Relationships between root system morphology and biomass production under nitrogen deficiency in grafted tomato. In The International Symposium on “Root Development: Adventitious, Lateral and Primary Roots- at the Crossroads of Genome, Environment & Technology.”

  • Li, Z., Philip, D., Neuhaeuser, B., Schulze, W. X., & Ludewig, U. (2015). Protein dynamics in young maize root hairs in response to macro- and micronutrient deprivation. Journal of Proteome Research, 14(8), 3362–3371.

    Article  CAS  Google Scholar 

  • Liang, C. J., Ge, Y. Q., Su, L., & Bu, J. J. (2015). Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain. Environmental Science and Pollution Research, 22(1), 535–545.

    Article  CAS  Google Scholar 

  • Liu, T. W., Wu, F. H., Wang, W. H., Chen, J., Li, Z. J., Dong, X. J., et al. (2011). Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31(4), 402–413.

    Article  Google Scholar 

  • Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258.

    Article  CAS  Google Scholar 

  • Makkonen, K., & Helmisaari, H. S. (2001). Fine root biomass and production in Scots pine stands in relation to stand age. Radiotherapy and Oncology, 21(2–3), S114.

    Google Scholar 

  • Meena, H. M. (2013). Acid rain-the major cause of pollution: its causes, effects and solution. International Journal of Scientific Engineering and Technology, 2(9), 772–775.

    Google Scholar 

  • Miller, D. M. (2011). Studies of root function in Zea mays I. Apparatus and methods. Canadian Journal of Botany, 58(3), 351–360.

    Article  Google Scholar 

  • Mo, H. B., Yin, Y. L., Lu, Z. G., Wei, X. J., & Xu, J. H. (2011). Effects of NaCl stress on the seedling growth and K+ and Na+-allocation of four leguminous tree species. Chinese Journal of Applied Ecology, 22(5), 1155–1161.

    CAS  Google Scholar 

  • Morgan, S. H., Maity, P. J., Geilfus, C.-M., Lindberg, S., & Muehling, K. H. (2014). Leaf ion homeostasis and plasma membrane H+-ATPase activity in Vicia faba change after extra calcium and potassium supply under salinity. Plant Physiology and Biochemistry, 82(3), 244–253.

    Article  CAS  Google Scholar 

  • Munoz, N., Rodriguez, M., Robert, G., & Lascano, R. (2014). Negative short-term salt effects on the soybean-Bradyrhizobium japonicum interaction and partial reversion by calcium addition. Functional Plant Biology, 41(1), 96–105.

    Article  CAS  Google Scholar 

  • Nogueirol, R. C., Monteiro, F. A., Gratão, P. L., & Azevedo, R. A. (2016). Cadmium application in tomato: nutritional imbalance and oxidative stress. Water, Air, and Soil Pollution, 227(6), 1–20.

    Article  CAS  Google Scholar 

  • Onanuga, A. O., Jiang, P. a., & Adl, S. (2011). Effect of phytohormones, phosphorus and potassium on cotton varieties (Gossypium hirsutum) root growth and root activity grown in hydroponic nutrient solution. Journal of Agricultural Science, 4(3), 93.

    Article  Google Scholar 

  • Osaki, M., Shinano, T., & Matsumoto, M. (1997). Relationships between root activity and N, P, K, Ca, and Mg contents in roots of field crops. Soil Science and Plant Nutrition, 43(1), 11–24.

    Article  CAS  Google Scholar 

  • Page, M. J., & Di, C. E. (2006). Role of Na+ and K+ in enzyme function. Physiological Reviews, 86(4), 1049–1092.

    Article  CAS  Google Scholar 

  • Palmgren, M. G. (2001). Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 817–845.

    Article  CAS  Google Scholar 

  • Remko, M., Fitz, D., & Rode, B. M. (2008). Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure and properties of L-arginine and zwitterionic L-arginine. Journal of Physical Chemistry A, 112(33), 7652–7661.

    Article  CAS  Google Scholar 

  • Rusak, G., Piantanida, I., Bretschneider, S., & Ludwig-M, J. (2009). Complex formation of quercetin with lanthanum enhances binding to plant viral satellite double stranded RNA. Journal of Inorganic Biochemistry, 103(12), 1597–1601.

    Article  CAS  Google Scholar 

  • Saruhan, V., Kusvuran, A., & Kokten, K. (2015). Effects of sewage sludge used as fertilizer on the yield and chemical contents of common vetch (Vicia saliva L.) and soil. Legume Research, 38(4), 488–495.

    Article  Google Scholar 

  • Singh, A., & Agrawal, M. (2008). Acid rain and its ecological consequences. Journal of Environmental Biology, 29(1), 15–24.

    CAS  Google Scholar 

  • Srivastav, M., Dubey, A. K., Singh, A. K., Singh, R., Pandey, R. N., & Deshmukh, P. S. (2009). Effect of salt stress on mortality, reduction in root growth and distribution of mineral nutrients in Kurukkan mango at nursery stage. Indian Journal of Horticulture, 66(1), 28–34.

    Google Scholar 

  • Sui, D. Z., Wang, B. S., & Shi, S. Z. (2007). Effects of salt stress on root growth of 5 willow clones seedling. Journal of Jiangsu Forestry Science and Technology, 34, 5–8.

    Google Scholar 

  • Sun, Z., Wang, L., Chen, M., Wang, L., Liang, C., Zhou, Q., et al. (2011). Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicology and Environmental Safety, 79(4), 62–68.

    Google Scholar 

  • Sun, Z., Wang, L., Zhou, Q., & Huang, X. (2013). Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. Chemosphere, 93(2), 344–352.

    Article  CAS  Google Scholar 

  • Tong, H., Sun, J., Guo, S. R., & Zhang, Z. X. (2012). Effects of iso-osmotic Ca(NO3)2 and NaCl stress on root morphology and activity of cucumber seedlings. Journal of Nanjing Agricultural University, 35(37–41).

  • Trubat, R., Cortina, J., & Vilagrosa, A. (2006). Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees, 20(3), 334–339.

    Article  Google Scholar 

  • Wakeel, A., Hanstein, S., Pitann, B., Schubert, S. (2010). Hydrolytic and pumping activity of H -ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress. Journal of Plant Physiology, 167(9), 725–731.

  • Wen, K., Liang, C., Wang, L., Hu, G., & Zhou, Q. (2011). Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere, 84(5), 601–608.

    Article  CAS  Google Scholar 

  • White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511.

    Article  CAS  Google Scholar 

  • Wu, Y., Hu, Y., & Xu, G. (2009). Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation, 57(3), 271–280.

    Article  CAS  Google Scholar 

  • Yan, F., Zhu, Y. Y., Muller, C., Zorb, C., & Schubert, S. (2002). Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, 129(1), 50–63.

    Article  CAS  Google Scholar 

  • Zeng, H., Di, T., Zhu, Y., & Subbarao, G. V. (2015). Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots. Plant and Soil, 398(1–2), 301–312.

    Google Scholar 

  • Zhang, R., Liu, G., Wu, N., Gu, M., Zeng, H., Zhu, Y., et al. (2011). Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant and Soil, 349(1–2), 3–11.

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, Y., Ni, Y., Meng, Z., Lu, T., & Li, T. (2014). Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. Plos One, 9(5).

  • Zhu, Y., Di, T., Xu, G., Chen, X., Zeng, H., Yan, F., et al. (2009). Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant, Cell and Environment, 32(10), 1428–1440.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Natural Science Foundation of Jiangsu Province (No.BK20161131) and the National Natural Science Foundation of China (31000245, 31370517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanjuan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Bu, J. & Liang, C. Root Morphology and Growth Regulated by Mineral Nutrient Absorption in Rice Roots Exposed to Simulated Acid Rain. Water Air Soil Pollut 227, 457 (2016). https://doi.org/10.1007/s11270-016-3151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3151-1

Keywords

Navigation