Skip to main content
Log in

Chemical and Ecotoxicological Assessment of Multiple Heavy Metal-Contaminated Soil Treated by Phosphate Addition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, two different phosphates, namely potassium dihydrogen phosphate (PDP) and dipotassium hydrogen phosphate (DHP), were used to immobilize multiple heavy metals (HMs) in a long-term contaminated soil collected from Hezhang County (China). Chemical and biological methods were used to evaluate the treatment efficiency. The first step of the Community Bureau of Reference sequential extraction (BCR1) method was used to predict the mobility and availability of HMs and showed that PDP and DHP significantly decreased BCR1-extracted Pb (BCR1-Pb) concentration (p < 0.05) by 90.36 and 86.19 %, respectively, when they were applied at a P/HMs (sum of Pb, Cd, and Zn) molar ratio of 5:1. Two phosphates also reduced BCR1-Cd concentration by up to 36.78 and 37.62 %, respectively, but had no apparent effect on Zn mobility. Microcalorimetric and fluorescein diacetate hydrolysis activity analyses were used to assess the toxicity change of HMs. Soil microbial activity was increased to some extent in phosphate-treated soils, which may result from decreased HMs toxicity, as well as the nutritional effects of added phosphates. Adverse impacts on microbial activity were also observed, which may be due to the increased pH associated with phosphate treatment. This study provides baseline information for establishing remediation strategies for managing multiple HM-contaminated agricultural soils. Future studies should focus on reducing the environmental risk of Zn and decreasing the adverse pH effects of phosphate treatment on soil microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33(7), 943–951.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., Duraisamy, P., Mani, A., & Arulmozhiselvan, K. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil, 250(1), 83–94. doi:10.1023/A:1022826014841.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166. doi:10.1016/j.jhazmat.2013.12.018.

    Article  CAS  Google Scholar 

  • Braissant, O., Wirz, D., Göpfert, B., & Daniels, A. (2010). “The heat is on”: rapid microcalorimetric detection of mycobacteria in culture. Tuberculosis, 90(1), 57–59.

    Article  CAS  Google Scholar 

  • Cao, X. D., Wahbi, A., Ma, L. N., Li, B., & Yang, Y. L. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164(2–3), 555–564. doi:10.1016/j.jhazmat.2008.08.034.

    Article  CAS  Google Scholar 

  • Cao, X. D., Liang, Y., Zhao, L., & Le, H. Y. (2013). Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions. Environmental Science and Pollution Research, 20(9), 5913–5921. doi:10.1007/s11356-012-1349-3.

    Article  CAS  Google Scholar 

  • Chen, H. L., Yao, J., Wang, F., Zhou, Y., Chen, K., Zhuang, R. S., et al. (2010). Investigation of the acute toxic effect of chlorpyrifos on Pseudomonas putida in a sterilized soil environment monitored by microcalorimetry. Archives of Environmental Contamination and Toxicology, 58(3), 587–593.

    Article  CAS  Google Scholar 

  • Fang, Y. Y., Cao, X. D., & Zhao, L. (2012). Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research, 19(5), 1659–1667. doi:10.1007/s11356-011-0674-2.

    Article  CAS  Google Scholar 

  • Feng, X. B., Li, G. H., & Qiu, G. L. (2006). A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang County, Guizhou, China: part 2. Mercury contaminations to soil and crop. Science of the Total Environment, 368(1), 47–55. doi:10.1016/j.scitotenv.2005.09.036.

    Article  CAS  Google Scholar 

  • Gao, Y., Zhou, P., Mao, L., Zhi, Y. E., & Shi, W. J. (2009). Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose–response model and PCR-RAPD. Environmental Earth Sciences, 60(3), 603–612. doi:10.1007/s12665-009-0200-8.

    Article  Google Scholar 

  • Ge, T. D., Nie, S. A., Wu, J. S., Shen, J. L., Xiao, H. A., Tong, C. L., et al. (2010). Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study. Journal of Soils and Sediments, 11(1), 25–36. doi:10.1007/s11368-010-0293-4.

    Article  Google Scholar 

  • Guo, H., Yao, J., Cai, M. M., Qian, Y. G., Guo, Y., Richnow, H. H., et al. (2012). Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere, 87(11), 1273–1280. doi:10.1016/j.chemosphere.2012.01.034.

    Article  CAS  Google Scholar 

  • Hafsteinsdottir, E. G., Camenzuli, D., Rocavert, A. L., Walworth, J., & Gore, D. B. (2015). Chemical immobilization of metals and metalloids by phosphates. Applied Geochemistry, 59, 47–62. doi:10.1016/j.apgeochem.2015.03.014.

    Article  CAS  Google Scholar 

  • Hong, C. O., Chung, D. Y., do Lee, K., & Kim, P. J. (2010). Comparison of phosphate materials for immobilizing cadmium in soil. Archives of Environmental Contamination and Toxicology, 58(2), 268–274. doi:10.1007/s00244-009-9363-2.

    Article  CAS  Google Scholar 

  • Kelly, J. M., & Henderson, G. S. (1978). Effects of nitrogen and phosphorus additions on deciduous litter decomposition. Soil Science Society of America Journal, 42(6), 972–976.

    Article  CAS  Google Scholar 

  • Kim, S., Owens, V., Kim, Y., Lee, S., Park, H., Kim, K., et al. (2015). Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium. Bulletin of Environmental Contamination and Toxicology, 1–5, doi:10.1007/s00128-015-1621-6.

  • Lee, S. S., Lim, J. E., El-Azeem, S. A. A., Choi, B., Oh, S.-E., Moon, D. H., et al. (2013). Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 20(3), 1719–1726.

    Article  CAS  Google Scholar 

  • Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. doi:10.1016/j.scitotenv.2013.08.090.

    Article  Google Scholar 

  • Li, J., Ma, Y. B., Hu, H. W., Wang, J. T., Liu, Y. R., & He, J. Z. (2015). Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Frontiers in Microbiology, 6, 31. doi:10.3389/fmicb.2015.00031.

    Google Scholar 

  • Liang, Y., Wang, X. C., Cao, X. D., & Zhao, L. (2012). Immobilization of Pb, Cu, and Zn in a multi-metal contaminated soil amended with triple superphosphate fertilizer and phosphate rock tailing. Progress in Environmental Science and Engineering, 356–360, 1716–1718. doi:10.4028/www.scientific.net/AMR.356-360.1716.

    Google Scholar 

  • Lu, K. P., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., et al. (2016). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management. doi:10.1016/j.jenvman.2016.05.068.

    Google Scholar 

  • Lyu, H. H., Gong, Y. Y., Tang, J. S., Huang, Y., & Wang, Q. L. (2016). Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, 23(14), 14472–14488. doi:10.1007/s11356-016-6621-5.

    Article  CAS  Google Scholar 

  • Margesin, R., Plaza, G. A., & Kasenbacher, S. (2011). Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere, 82(11), 1583–1588. doi:10.1016/j.chemosphere.2010.11.056.

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2015). Soil Environmental Quality Standard for Agricultural Land, GB 15618–2015.

  • Ndiba, P., Axe, L., & Boonfueng, T. (2008). Heavy metal immobilization through phosphate and thermal treatment of dredged sediments. Environmental Science & Technology, 42(3), 920–926. doi:10.1021/es072082y.

    Article  CAS  Google Scholar 

  • Niu, F. J., He, J. X., Zhang, G. S., Liu, X. M., Liu, W., Dong, M. X., et al. (2014). Effects of enhanced UV-B radiation on the diversity and activity of soil microorganism of alpine meadow ecosystem in Qinghai–Tibet Plateau. Ecotoxicology, 23(10), 1833–1841. doi:10.1007/s10646-014-1314-7.

    Article  CAS  Google Scholar 

  • Núñez-Regueira, L., Rodríguez-Añón, J. A., Proupín-Castiñeiras, J., & Núñez-Fernández, O. (2006). Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with eucalyptus in Galicia (NW Spain). Soil Biology and Biochemistry, 38(1), 115–124. doi:10.1016/j.soilbio.2005.04.031.

    Article  Google Scholar 

  • Pan, L. B., Ma, J., Wang, X. L., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere, 148, 248–254. doi:10.1016/j.chemosphere.2015.12.049.

    Article  CAS  Google Scholar 

  • Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology, 34(6), 495–604.

    Article  CAS  Google Scholar 

  • Rodríguez, L., Gómez, R., Sánchez, V., & Alonso-Azcárate, J. (2015). Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings. Environmental Science and Pollution Research, 23(7), 6046–6054. doi:10.1007/s11356-015-4287-z.

    Article  Google Scholar 

  • Scheckel, K. G., Diamond, G. L., Burgess, M. F., Klotzbach, J. M., Maddaloni, M., Miller, B. W., et al. (2013). Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science. Journal of Toxicology and Environmental Health. Part B: Critical Reviews, 16(6), 337–380. doi:10.1080/10937404.2013.825216.

    Article  CAS  Google Scholar 

  • Sillen, W. M. A., Thijs, S., Abbamondi, G. R., Janssen, J., Weyens, N., White, J. C., et al. (2015). Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biology and Biochemistry, 91, 14–22. doi:10.1016/j.soilbio.2015.08.019.

    Article  CAS  Google Scholar 

  • Soares, M. A. R., Quina, M. J., & Quinta-Ferreira, R. M. (2015). Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell. Journal of Environmental Management, 164, 137–145. doi:10.1016/j.jenvman.2015.08.042.

    Article  CAS  Google Scholar 

  • Su, X. J., Zhu, J., Fu, Q. L., Zuo, J. C., Liu, Y. H., & Hu, H. Q. (2015). Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Journal of Environmental Sciences (China), 28, 64–73. doi:10.1016/j.jes.2014.07.022.

    Article  Google Scholar 

  • Thirukkumaran, C. M., & Parkinson, D. (2000). Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry, 32(1), 59–66.

    Article  CAS  Google Scholar 

  • Tsang, D. C. W., Olds, W. E., Weber, P. A., & Yip, A. C. K. (2013). Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere, 93(11), 2839–2847. doi:10.1016/j.chemosphere.2013.09.097.

    Article  CAS  Google Scholar 

  • Wang, F., Yao, J., Chen, H. L., Chen, K., Trebše, P., & Zaray, G. (2010). Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere, 78(3), 319–326.

    Article  CAS  Google Scholar 

  • Wang, T., Sun, H. W., Mao, H. J., Zhang, Y. F., Wang, C. P., Zhang, Z. Y., et al. (2014). The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. Journal of Hazardous Materials, 278, 483–490. doi:10.1016/j.jhazmat.2014.06.028.

    Article  CAS  Google Scholar 

  • Wen, J., Yi, Y. J., & Zeng, G. M. (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. Journal of Environmental Management, 178, 63–69. doi:10.1016/j.jenvman.2016.04.046.

    Article  CAS  Google Scholar 

  • Yan, H., Yuan, S. Y., Li, M. Y., & Xiao, J. (2015). Evaluation of heavy metal contamination in agricultural topsoils in suburban Xuchang City, China. Environmental Earth Sciences, 74(3), 2475–2480. doi:10.1007/s12665-015-4252-7.

    Article  CAS  Google Scholar 

  • Yang, Y. G., Liu, C. Q., Pan, W., Zhang, G. P., & Zhu, W. H. (2006). Heavy metal accumulation from zinc smelters in a carbonate rock region in Hezhang County, Guizhou Province, China. Water, Air, and Soil Pollution, 174(1–4), 321–339. doi:10.1007/s11270-006-9121-2.

    Article  CAS  Google Scholar 

  • Yuan, Z. M., Liu, H. J., Han, J., Sun, J. J., Wu, X. Y., & Yao, J. (2016). Monitoring soil microbial activities in different cropping systems through combined methods. Pedosphere, 26.

  • Zhang, Z., Ren, J., Wang, M., Song, X. L., Zhang, C., Chen, J. Y., et al. (2016). Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH. Chemosphere, 159, 58–65. doi:10.1016/j.chemosphere.2016.05.082.

    Article  CAS  Google Scholar 

  • Zheng, S. X., Hu, J. L., Chen, K., Yao, J., Yu, Z. N., & Lin, X. G. (2009). Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biology and Biochemistry, 41(10), 2094–2099. doi:10.1016/j.soilbio.2009.07.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the Public Welfare Project of Chinese Ministry of Environmental Protection (201409042, 201509049), key project from the National Science Foundation of China (41430106), and the National Natural Science Foundation of China (41273092, U1402234). The authors express their sincere thanks to Prof. Geoffrey Sunahara for his scientific advice and stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Zhao, Y., Guo, Z. et al. Chemical and Ecotoxicological Assessment of Multiple Heavy Metal-Contaminated Soil Treated by Phosphate Addition. Water Air Soil Pollut 227, 403 (2016). https://doi.org/10.1007/s11270-016-3100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3100-z

Keywords

Navigation