Skip to main content
Log in

Isolation of Rhodococcus sp. CMGCZ Capable to Degrade High Concentration of Fluoranthene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A bacterial strain CMGCZ was isolated from an abandoned oil field soil sample and identified as Rhodococcus sp. by 16S rRNA sequencing. Rhodococcus sp. CMGCZ was investigated for the degradation of model polycyclic aromatic hydrocarbons (PAHs) and Iranian light crude oil (ILCO) as a sole carbon source in minimal medium. Biodegradation enhancement was attained by supplementing the minimal medium with yeast extract (YE). Rhodococcus sp. CMGCZ was capable to degrade 13.2 % naphthalene (Nap), 13.1 % phenanthrene (Phe), and 99.3 % fluoranthene (Fla) in 1 week and 11 % aliphatic fraction of ILCO in 2 weeks as a sole carbon and energy source. Effect of YE supplementation on degradation potential of Rhodococcus sp. CMGCZ depended upon the added hydrocarbon in the medium. YE completely inhibited Nap degradation, slightly enhanced degradation of Phe (14.8 %) and ILCO aliphatics (13.2 %), and promoted a more rapid degradation of Fla (100 %). YE addition promoted rapid degradation of Fla and eliminated delay of 24 h in Fla degradation that was observed in minimal medium. Rhodococcus sp. CMGCZ was capable to degrade high concentrations of Fla (1000 mg l−1). Rieske [Fe2-S2] center was amplified in Rhodococcus sp. CMGCZ that exhibited homology with Rieske [Fe2-S2] domain protein of Mycobacterium species and pahAC gene of uncultured bacterium clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARHDs:

Aromatic-ring-hydroxylating dioxygenases

Fla:

Fluoranthene

HMW:

High molecular weight

ILCO:

Iranian light crude oil

LB:

Luria Bertani

LMW:

Low molecular weight

MSM:

Minimal salt medium

Nap:

Naphthalene

PAHs:

Polycyclic aromatic hydrocarbons

PCB:

Polychlorinated biphenyl

Phe:

Phenanthrene

Pyr:

Pyrene

YE:

Yeast extract

YMSM:

MSM supplemented with 0.05 % YE

References

  • Bell, K., Philip, J., Aw, D., & Christofi, N. (1998). The genus Rhodococcus. Journal of Applied Microbiology, 85, 195–210.

  • Boldrin, B., Thiem, A., & Fritsche, C. (1993). Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Applied and Environmental Microbiology, 59, 1927–1930.

    CAS  Google Scholar 

  • Bouchez, M., Blanchet, D., & Vandecasteele, J. P. (1997). An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. Microbiol, 143, 1087–1093.

    Article  CAS  Google Scholar 

  • Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon contaminated Arctic soils: implications for nutrient amended bioremediation. Environ Sci Technol, 31, 2078–2084.

    Article  CAS  Google Scholar 

  • Brezna, B., Khan, A. A., & Cerniglia, C. E. (2003). Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiology Letters, 223, 177–183.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    Article  CAS  Google Scholar 

  • Chadhain, S. M. N., Norman, R. S., Pesce, K. V., Kukor, J. J., & Zylstra, G. J. (2006). Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Applied and Environmental Microbiology, 72, 4078–4087.

    Article  CAS  Google Scholar 

  • Chang, B. V., Chang, I. T., & Yuan, S. Y. (2008). Biodegradation of phenanthrene and pyrene from mangrove sediment in subtropical Taiwan. J. Environ. Sci. Health Part A, 43, 233–238.

    Article  CAS  Google Scholar 

  • de Carvalho, C. C. C. R., & da Fonseca, M. M. R. (2005a). The remarkable Rhodococcus erythropolis. Applied Microbiology and Biotechnology, 67, 715–726.

    Article  Google Scholar 

  • de Carvalho, C. C. C. R., & da Fonseca, M. M. R. (2005b). Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiology Ecology, 51, 389–399.

    Article  Google Scholar 

  • Dean-Ross, D., & Cerniglia, C. E. (1996). Degradation of pyrene by Mycobacterium flavescens. Applied Microbiology and Biotechnology, 46, 307–312.

    Article  CAS  Google Scholar 

  • Dean-Ross, D., Moody, J., Freeman, J. P., Doerge, D. R., & Cerniglia, C. E. (2001). Metabolism of anthracene by a Rhodococcus species. FEMS Microbiology Letters, 204, 205–211.

    Article  CAS  Google Scholar 

  • Dean-Ross, D., Moody, J., & Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediments. FEMS Microbiology Ecology, 41, 1–7.

    Article  CAS  Google Scholar 

  • Gariazzo, C., Lamberti, M., Hänninen, O., Silibello, C., Pelliccioni, A., Porta, D., et al. (2015). Assessment of population exposure to polycyclic aromatic hydrocarbons (PAHs) using integrated models and evaluation of uncertainties. Atmosph Environ, 101, 235–245.

    Article  CAS  Google Scholar 

  • Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11, 236–243.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, A. R. (2015). Biotransformation studies on fluoranthene, a four-ring polycylic aromatic hydrocarbon, by white-rot fungus Armillaria sp. F022. Agriculture and Agricutural Science Procedia, 3, 45–50.

    Article  Google Scholar 

  • Hall, K., Miller, C. D., Sorensen, D. L., Anderson, A. J., & Sims, R. C. (2005). Development of a catabolically significant genetic probe for polycyclic aromatic hydrocarbon-degrading Mycobacteria in soil. Biodegradation, 16, 475–484.

    Article  CAS  Google Scholar 

  • Hamann, C., Hegemann, J., & Hildebrandt, A. (1999). Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiology Letters, 173, 255–263.

    Article  CAS  Google Scholar 

  • Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.

    Article  Google Scholar 

  • Harayama, S., Kishira, H., Kasai, Y., & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of Molecular Microbiology and Biotechnology, 1, 63–70.

    CAS  Google Scholar 

  • Heitkamp, M. A., & Cerniglia, C. E. (1988). Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Applied and Environmental Microbiology, 54, 1612–1614.

    CAS  Google Scholar 

  • Herwijnen, V. R., Wattiau, P., Bastiaens, L., Daal, L., Jonker, L., Springael, D., Govers, H. A. J., & Parsons, J. R. (2003). Elucidation of the metabolic pathways of fluorine and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154, 199–206.

    Article  Google Scholar 

  • Ho, Y., Jackson, M., Yang, Y., Mueller, J. G., & Pritchard, P. H. (2000). Characterization of fluoranthene and pyrene degrading bacteria isolated from PAH-contaminated soils and sediments. J Ind Microbiol Biot, 24, 100–112.

    Article  CAS  Google Scholar 

  • Huang, L., Ma, T., Li, D., Liang, F., Liu, R., & Li, G. (2008). Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Marine Pollution Bulletin, 56, 1714–1718.

    Article  CAS  Google Scholar 

  • Ito, H., Hosokawa, R., Morikaw, M., & Okuyama, H. (2008). A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. Int Biodeter Biodeg, 61, 223–232.

    Article  CAS  Google Scholar 

  • Iwabuchi, N., Sunairi, M., Anzai, H., Nakajima, M., & Harayama, S. (2000). Relationship between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Applied and Environmental Microbiology, 66, 5073–5077.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodeg, 45, 57–88.

    Article  CAS  Google Scholar 

  • Kelley, I., & Cerniglia, C. E. (1995). Degradation of mixture of high molecular weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. J Soil Contam, 4, 77–91.

    Article  CAS  Google Scholar 

  • Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K. S., & Ryu, H. W. (2003). Degradation of polyaromatics hydrocarbons by Burkholderia cepacia 2A-12. World Journal of Microbiology and Biotechnology, 19, 411–417.

    Article  CAS  Google Scholar 

  • Kim, J., Kweon, O., Freeman, J. P., Jones, R. C., Adjei, M. D., Jhoo, J., Edmondson, R. D., & Cerniglia, C. E. (2006). Molecular cloning and expression of genes encoding a novel dioxygenase involved in low and high molecular weight polycylic aromatic hydrocarbon degradation in Mycobacterium vanbaleenii PYR-1. Applied and Environmental Microbiology, 72, 1045–1054.

    Article  CAS  Google Scholar 

  • Kiyohara, H., Nagao, K., & Yana, K. (1982). Rapid screen of bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Applied and Environmental Microbiology, 43, 454–457.

    CAS  Google Scholar 

  • Kulikova, A. K., & Bezborodov, A. M. (2000). Oxidation of organic compounds by propane monooxygenase of Rhodococcus erythropolis 3/89. Appl Biochem Microbiol, 36, 227–230.

    Article  Google Scholar 

  • Larkin, M. J., Allen, C. C. R., Kulakov, L. A., & Lipscomb, D. A. (1999). Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. Journal of Bacteriology, 181, 6200–6204.

    CAS  Google Scholar 

  • Larkin, M. J., Kulakov, L. A., & Allen, C. C. R. (2005). Biodegradation and Rhodococcus—masters of catabolic versatility. Current Opinion in Biotechnology, 16, 282–290.

    Article  CAS  Google Scholar 

  • Lin, Y., & Cai, L. X. (2008). PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Marine Pollution Bulletin, 57, 703–706.

    Article  CAS  Google Scholar 

  • Lu, Y., Wang, Y., Zhao, J., Zeng, X., Luo, Q., & Wang, L. (2009). Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. J Hazard Mater, 168, 938–943.

    Article  CAS  Google Scholar 

  • Maiti, A., Das, S., & Bhattacharyya, N. (2012). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons by Bacillus thuringiensis strain NA2. J Sci, 1, 72–75.

    Google Scholar 

  • Martinkova, L., Uhnakova, B., Patek, M., Nesvera, J., & Kren, V. (2009). Biodegradation potential of the genus Rhodococcus. Environ Int, 35, 162–177.

    Article  CAS  Google Scholar 

  • Mishra, S., Singh, S. N., & Pande, V. (2014). Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Biores Tech, 164, 299–308.

    Article  CAS  Google Scholar 

  • Moser, R., & Stahl, U. (2001). Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Applied Microbiology and Biotechnology, 55, 609–618.

    Article  CAS  Google Scholar 

  • Mueller, J. G., Chapman, P. J., & Pritchard, P. H. (1989). Action of a fluoranthene utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Applied and Environmental Microbiology, 55, 3085–3090.

    CAS  Google Scholar 

  • Mueller, J. G., Chapman, P. J., Blattmann, B. O., & Pritchard, P. H. (1990). Isolation and characterization of a fluoranthene utilizing strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology, 56, 1079–1086.

    CAS  Google Scholar 

  • Mueller, J. G., Devereux, R., Santavy, D. L., Lantz, S. E., Willis, S. G., & Pritchard, P. H. (1997). Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek, 71, 329–343.

    Article  CAS  Google Scholar 

  • Neu, T. R. (1996). Significance of bacterial surface active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 60, 151–166.

    CAS  Google Scholar 

  • Pagnout, C., Rast, C., Veber, A., Poupin, P., & Ferard, J. (2006). Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicol Environ Saf, 65, 151–158.

    Article  CAS  Google Scholar 

  • Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J., & Ferard, J. (2007). Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc2155. Research in Microbiology, 158, 175–186.

    Article  CAS  Google Scholar 

  • Parales, R. E., & Resnick, S. M. (2006). Aromatic ring hydroxylating dioxygenases. In J. Ramos & C. Levesque (Eds.), Pseudomonas (Vol. 4, pp. 287–340). Netherlands: Springer.

    Chapter  Google Scholar 

  • Peng, R., Xiong, A., Xue, Y., Fu, X., Gao, F., Zhao, W., Tian, Y., & Yao, Q. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev, 32, 927–955.

    Article  CAS  Google Scholar 

  • Peterson, B. S., Rauh, V. A., Bansal, R., Hao, X., Toth, Z., Nati, G., Walsh, K., Miller, R. L., Arias, F., Semanek, D., & Perera, F. (2015). Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry, 72, 531–540.

    Article  Google Scholar 

  • Rehmann, K., Hertkorn, N., & Kettrup, A. (2001). Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology, 147, 2783–2794.

    Article  CAS  Google Scholar 

  • Rolling, W. F. M., Milner, M. G., Jones, D. M., Lee, K., Daniel, F., Swannell, R. J. P., & Head, I. M. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient enhanced oil spill bioremediation. Applied and Environmental Microbiology, 68, 5537–5548.

    Article  Google Scholar 

  • Sepic, E., Bricelj, M., & Leskovse, H. (1998). Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR1: isolation and identification of metabolites. Journal of Applied Microbiology, 85, 746–754.

    Article  CAS  Google Scholar 

  • Simarro, R., Gonzalez, N., Bautista, L. F., & Molina, M. C. (2012). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiology Ecology, 83, 438–449.

    Article  Google Scholar 

  • Singh, A., & Ward, O. P. (2004). Biodegradation and bioremediation. New York: Springer.

    Book  Google Scholar 

  • Storey, S., Ashaari, M. M., McCabe, G., Harty, M., Dempsey, R., Doyle, O., Clipson, N., & Doyle, E. (2014). Microbial community structure during fluoranthene degradation in the presence of plants. Journal of Applied Microbiology, 117, 74–84.

    Article  CAS  Google Scholar 

  • Suen, W. C., Haigler, B. E., & Spain, J. C. (1996). 2,4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. Journal of Bacteriology, 178, 4926–4934.

    CAS  Google Scholar 

  • Ueno, A., Hasanuzzaman, M., Yumoto, I., & Okuyama, H. (2006). Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms. Current Microbiology, 52, 182–185.

    Article  CAS  Google Scholar 

  • Ueno, A., Ito, Y., Yumoto, I., & Okuyama, H. (2007). Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World Journal of Microbiology and Biotechnology, 23, 1739–1745.

    Article  CAS  Google Scholar 

  • Vila, J., Tauler, M., & Grifoll, M. (2015). Bacterial PAH degradation in marine and terrestrial habitats. Curr Opinion Biotechnol, 33, 95–102.

    Article  CAS  Google Scholar 

  • Walter, U., Beyer, M., Klein, J., & Rehm, H. J. (1991). Degradation of pyrene by Rhodococcus sp. UW1. Applied Microbiology and Biotechnology, 34, 671–676.

    Article  CAS  Google Scholar 

  • Walworth, J. L., & Reynolds, C. M. (1995). Bioremediation of a petroleum contaminated cryic soil: effects of phosphorus, nitrogen and temperature. J Soil Contam, 4, 299–310.

    Article  CAS  Google Scholar 

  • Warhurst, A. M., & Fewson, C. A. (1994). Biotransformations catalysed by the genus Rhodococcus. Critical Reviews in Biotechnology, 14, 29–73.

    Article  CAS  Google Scholar 

  • Weißenfels, W. D., Beyer, M., & Klein, J. (1990). Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Applied Microbiology and Biotechnology, 32, 479–484.

    Article  Google Scholar 

  • Whyte, L. G., Hawari, J., Zhou, E., Bourbonniere, L., Inniss, W. E., & Greer, C. W. (1998). Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64, 2578–2584.

    CAS  Google Scholar 

  • Widada, J., Nojiri, H., Kasuga, K., Yoshida, T., Habe, H., & Omori, T. (2002). Molecular detection and diversity of polycyclic aromatic hydrocarbon degrading bacteria isolated from geographically diverse sites. Applied Microbiology and Biotechnology, 58, 202–209.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., Lai, K. M., Wan, C. K., Ma, K. K., & Fang, M. (2002). Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Poll, 139, 1–13.

    Article  CAS  Google Scholar 

  • Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., & Okuyama, H. (2004). Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marces possessing high efficiency to degrade gasoline, kerosene, diesel oil and lubricating oil. Current Microbiology, 49, 415–422.

    Article  CAS  Google Scholar 

  • Xu-Xiang, Z., Shu-Pei, C., Cheng-Jun, Z., & Shi-Lei, S. (2006). Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere, 16, 555–565.

    Article  Google Scholar 

  • Yagi, J. M., & Madsen, E. L. (2009). Diversity, abundance and consistency of microbial oxygenase expression and biodegradation in shallow contaminated aquifer. Applied and Environmental Microbiology, 75, 6478–6487.

    Article  CAS  Google Scholar 

  • Yam, C. K., van der Geize, R., & Eltis, L. D. (2010). Catabolism of aromatic compounds and steroids by Rhodococcus. In H. M. Alvarez (Ed.), Biology of Rhodococcus (Vol. 16, pp. 133–169). Germany: Springer.

    Chapter  Google Scholar 

  • Zhong, Y., Luan, T., Wang, X., Lan, C., & Tam, N. F. Y. (2007). Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Applied Microbiology and Biotechnology, 75, 175–186.

    Article  CAS  Google Scholar 

  • Zhou, Q. X., & Hua, T. (2004). Bioremediation: a review of applications and problems to be resolved. Progr Nat Sci, 14, 937–944.

    Article  CAS  Google Scholar 

  • Zhou, H. W., Luan, T. G., Zou, F., & Tam, N. F. Y. (2008). Different bacterial groups for biodegradation of three-and four-ring PAHs isolated from a Hong Kong mangrove sediment. J Hazard Mater, 152, 1179–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Higher Education Commission, Pakistan, under the program International Research Support Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Zubair Ahmed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, R.Z., Ahmed, N. Isolation of Rhodococcus sp. CMGCZ Capable to Degrade High Concentration of Fluoranthene. Water Air Soil Pollut 227, 162 (2016). https://doi.org/10.1007/s11270-016-2857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2857-4

Keywords

Navigation