Skip to main content

Advertisement

Log in

Biogenic and Anthropogenic Lipid Markers in Sediments from a Marsh Habitat Associated with the LCP Chemicals Superfund Site in Brunswick, Georgia, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sediment samples from a salt marsh habitat in the vicinity of Linden Chemical Plant (LCP) Superfund site in Brunswick Georgia, USA, were analyzed for the composition of total solvent extracts and sources of lipid compounds. Stable isotope analysis of carbon and nitrogen and gas chromatography-mass spectrometry analysis infer past multiple sources of organic matter (OM) from aquatic and terrestrial origin, e.g., phytoplankton, bacteria, and land plants, as well as anthropogenic contamination. The n-alkane and n-alkanol distributions in the sediment samples were dominated by long-chain homologues maximizing at C25–C27 for alkanes (carbon preference index (CPI) ∼1) and C32 for n-alkanols indicating inputs from higher plants, but also microbial and petroleum-related sources. Fatty acid distribution was characterized by short-chain (< C18) and branched homologues indicative of bacterial origin. The high abundance of dehydroabietic acid and anthropogenic contaminants, including alkylphenols, are indicative of the effects of past industrial activities in the LCP marsh area in Brunswick, Georgia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambles, A., Jambu, P., & Ntsikoussalabongui, B. (1989). Evolution des lipides naturels d’un podzol forestier induite par l’apport d’engrais min_eraux: hydrocarbures, cetones, alcohols. Science Du Sol, 27, 201–214.

    CAS  Google Scholar 

  • Atanassova, I., & Teoharov, M. (2010). Nature and origin of lipids in clay fractions from a fluvisol in a sewage sludge deposition field. Water, Air, and Soil Pollution, 208, 295–304. doi:10.1007/s11270-009-0167-9.

    Article  CAS  Google Scholar 

  • Biggers, W. J., & Laufer, H. (2004). Identification of juvenile hormone-active alkylphenols in the lobster Homarus americanus and in marine sediments. Biological Bulletin, 206, 13–24.

    Article  CAS  Google Scholar 

  • Bird, M. I., Robinson, R. A. J., Oo, N. W., et al. (2007). A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quaternary International. doi:10.1016/j.quaint.2007.08.003.

    Google Scholar 

  • Bouloubassi, I., & Saliot, A. (1993). Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologia Acta, 16, 145–161.

    CAS  Google Scholar 

  • Brassell, S. C., Eglinton, G., Maxwell, J. R., & Philp, R. P. (1978). Natural background of alkanes in the aquatic environment. In O. Hutzinger, L. H. van Levyveld, & B. C. J. Zoeteman (Eds.), Aquatic pollutants: transformation and biological effects (pp. 69–86). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A., & Schelske, C. L. (1999). Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology, 22, 205–221.

    Article  Google Scholar 

  • Brorström-Lundén, E., Hansson, K., Remberger, M., et al. (2011). Screening of benzothiazoles, benzenediamines, dicyclohexylamine and benzotriazoles. IVL Swedish Environmental Research Institute Ltd. Sweden: Göteborg.

    Google Scholar 

  • Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochimica Et Cosmochimica Acta, 117, 161–179.

    Article  CAS  Google Scholar 

  • Canuel, E. A., & Martens, C. S. (1993). Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Organic Geochemistry, 20, 563–577.

    Article  CAS  Google Scholar 

  • Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22(8), 5711–5741.

    Article  CAS  Google Scholar 

  • Cumbee, J. C., Jr., Gaines, K. F., Mills, G. L., et al. (2008). Clapper rails as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system. Ecotoxicology, 17, 485–494. doi:10.1007/s10646-008-0202-4.

    Article  CAS  Google Scholar 

  • Del’Arco, J. P., & de Franca, F. P. (1999). Biodegradation of crude oil in sandy sediment. International Biodeterioration & Biodegradation, 44(2–3), 87–92.

    Article  Google Scholar 

  • Duan, Y., & Ma, L. H. (2001). Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet plateau, China). Organic Geochemistry, 32, 1429–1442. doi:10.1016/S0146-6380(01)00105-X.

    Article  CAS  Google Scholar 

  • Elias, V. O., Simoneit, B. R. T., & Cardoso, J. N. (1997). Even n-alkanes predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften, 84, 415–420.

    Article  CAS  Google Scholar 

  • EPA. (2002). Georgia NPL/NPL caliber cleanup site summaries: LCP Chemicals Georgia Inc. Report # GAD099303182.

  • Grasset, L., Martinod, J., Plante, A. F., et al. (2009). Nature and origin of lipids in clay size fraction of a cultivated soil as revealed using preparative thermochemolysis. Organic Geochemistry, 40, 70–78.

    Article  CAS  Google Scholar 

  • Hjulström, B., & Isaksson, S. (2009). Identification of activity area signatures in a reconstructed Iron Age house by combining element and lipid analyses of sediments. Journal of Archaeological Science, 36, 174–183.

    Article  Google Scholar 

  • Hollander, D. J., & Smith, M. A. (2001). Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochimica & Cosmochimica Acta, 65, 4321–4377. doi:10.1016/S0016-7037(00)00506-8.

    Article  CAS  Google Scholar 

  • Hudson, E. D., Parrish, C. C., & Helleur, R. J. (2001). Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Marine Chemistry, 76, 253–270. doi:10.1016/S0304-4203(01)00066-4.

    Article  CAS  Google Scholar 

  • Inglett, P. W., & Reddy, K. R. (2006). Investigating the use of macrophyte stable C and N isotopic ratios as indicators of wetland eutrophication: patterns in the P‐affected Everglades. Limnology and Oceanography, 51(5), 2380–2387. doi:10.4319/lo.2006.51.5.2380.

    Article  CAS  Google Scholar 

  • Killops, S. D., & Killops, V. J. (1993). An introduction to organic geochemistry. Essex, UK and New York, NY: Longman Scientific & Technical, John Wiley & Sons.

    Google Scholar 

  • King, J. K., Kostka, J. E., Frischer, M. E., et al. (2001). A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environmental Science & Technology, 35, 2491–2496.

    Article  CAS  Google Scholar 

  • Koniecko, I., Staniszewska, M., Falkowska, L., et al. (2014). Alkylphenols in surface sediments of the Gulf of Gdansk (Baltic Sea). Water, Air, & Soil Pollution, 225, 2040.

    Article  CAS  Google Scholar 

  • Laufer, H., Chen, M., Johnson, M., Demir, N., & Bobbitt, J. M. (2012). The effect of alkylphenols on lobster shell hardening. Journal of Shellfish Research, 31(2), 555–562.

    Article  Google Scholar 

  • Lehman, M. F., Bernasconi, S. M., Barbieri, A., & Mckenzie, J. A. (2002). Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica & Cosmochimica Acta, 66, 3573–3584. doi:10.1016/S0016-7037(02)00968-7.

    Article  Google Scholar 

  • Madureira, L. A. S., van Kreveld, S. A., Eglinton, G., et al. (1997). Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core. Paleoceanography, 12, 255–269.

    Article  Google Scholar 

  • Martins, C. C., Bícego, M. C., Taniguchi, S., & Montone, R. C. (2004). Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 16, 117–122. doi:10.1016/j.envpol.2009.07.025.

    Article  Google Scholar 

  • Matsumoto, K., Kawamura, K., Uchida, M., & Shibata, Y. (2007). Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: implication for selective microbial degradation and modification of soil organic matter. Geochemical Journal, 41, 483–492.

    Article  CAS  Google Scholar 

  • Medeiros, P. M., Bícego, M. C., Castelão, R. M., et al. (2005). Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil. Environment International, 31, 77–87.

    Article  CAS  Google Scholar 

  • Medeiros, P. M., Sikes, E. L., Thomas, B., et al. (2012). Flow discharge influences on input and transport of particulate and sedimentary organic carbon along a small temperate river. Geochimica et Cosmochimica Acta, 77, 317–334.

    Article  CAS  Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic and plaeoclimatic processes. Organic Geochemistry, 27, 213–250.

    Article  CAS  Google Scholar 

  • Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20, 867–900.

    Article  CAS  Google Scholar 

  • Mille, G., Asia, L., Guiliano, M., et al. (2007). Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566–575.

    Article  CAS  Google Scholar 

  • Moucawi, J., Fustec, E., Jambu, P., & Jacquesy, J. C. (1981). Decomposition of lipids in soils: free and esterified fatty acids, alcohols and ketones. Soil Biology & Biochemistry, 13, 461–468.

    Article  CAS  Google Scholar 

  • Muri, G., Wakeham, S. G., Pease, T. K., & Faganeli, J. (2004). Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Organic Geochemistry, 35, 1083–1093.

    Article  CAS  Google Scholar 

  • Rieley, G., Collier, R. J., Jones, D. M., & Eglinton, G. (1991). Biogeochemistry of Ellesmere Lake, U.K. I. Source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 17, 901–912.

    Article  CAS  Google Scholar 

  • Oros, D. R., & David, N. (2002). Identification and evaluation of unidentified organic contaminants in the San Francisco Estuary (RMP Technical Report: SFEI Contribution 45). Oakland, CA: San Francisco Estuary Institute.

    Google Scholar 

  • Padley, F. B., Gunstone, F. D., & Harwood, J. L. (1992). Occurrence and characteristics of oils and fats. In F. D. Gunstone, J. L. Harwood, & F. B. Padley (Eds.), The lipid handbook (2nd ed., pp. 47–223). London: Chapman and Hall.

    Google Scholar 

  • Peterson, B. J., & Howarth, R. W. (1987). Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology & Oceanography, 32, 1195–1213.

    Article  CAS  Google Scholar 

  • Quénéa, K., Largeau, C., Derenne, S., Spaccini, R., Bardoux, G., & Mariotti, A. (2006). Molecular and isotopic study of lipids in particle size fractions of a sandy cultivated soil (Cestas cultivation sequence, southwest France): sources, degradation, and comparison with Cestas forest soil. Organic Geochemistry, 37, 20–44. doi:10.1016/j.orggeochem.2005.08.021.

    Article  CAS  Google Scholar 

  • Robinson, N., Cranwell, P. A., Finlay, B. J., & Eglinton, G. (1984). Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry, 6, 143–152.

    Article  CAS  Google Scholar 

  • Rumolo, P., Barra, M., Gherardi, S., Marsella, E., & Sprovieri, M. (2011). Stable isotopes and C/N ratios in marine sediments as a tool for discriminating anthropogenic impact. Journal of Environmental Monitoring, 13, 3399–3408.

    Article  CAS  Google Scholar 

  • Saavedra, L., Quiñones, R. A., & Becerra, J. (2014). Distribution and sources of phytosterols in coastal and river sediments of south-central Chile. Latin American Journal of Aquatic Research, 42, 61–84.

    Article  Google Scholar 

  • Sanches, F., Luz, P. J., da Betemps, L. P., et al. (2013). Studies of n-alkanes in the sediments of colony Z3 (Pelotas–RS–Brazil). Brazilian Journal of Aquatic Science and Technology (Impresso), 17, 27–33.

    Article  Google Scholar 

  • Savage, C., Leavitt, P. R., & Elmgren, R. (2004). Distribution and retention of effluent nitrogen in surface sediments of a coastal bay. Limnology & Oceanography, 49, 1503–1511. doi:10.4319/lo.2004.49.5.1503.

    Article  CAS  Google Scholar 

  • Seabrook, C. (2013). The world of the salt marsh: appreciating and protecting the tidal marshes of the southeastern Atlantic coast. Athens, GA: The University of Georgia Press. www.ugapress.org.

    Google Scholar 

  • Serrano, R., Nácher-Mestre, J., Portolés, T., et al. (2011). Non-target screening of organic contaminants in marine salts by gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Talanta, 85(2), 877–884.

    Article  CAS  Google Scholar 

  • Silva, C. A., Oliveira, C. R., Oliveira, I. R., & Madureira, L. A. (2008). Distribution of lipid compounds in sediments from Conceição Lagoon, Santa Catarina Island, Brazil. Journal of the Brazilian Chemical Society, 19, 1513–1522. doi:10.1590/S0103-50532008000800010.

    Article  CAS  Google Scholar 

  • Terranes, J. L., & Bernasconi, S. M. (2000). The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnology & Oceanography, 45, 801–813. doi:10.4319/lo.2000.45.4.0801.

    Article  Google Scholar 

  • Thamdrup, B., Finster, K., Hansen, J. W., & Bak, F. (1993). Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59, 101–108.

    CAS  Google Scholar 

  • Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence. Berlin: Springer.

    Book  Google Scholar 

  • Torres, I., Inglett, P., Brenner, M., et al. (2012). Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. Journal of Paleolimnology, 47, 693–706. doi:10.1007/s10933-012-9593-6.

    Article  Google Scholar 

  • Van Bergen, P. F., Bull, I. D., Poulton, P. R., & Evershed, R. P. (1997). Organic geochemical studies of soils from the Rothamsted classical experiments—I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness. Organic Geochemistry, 26, 117–135.

    Article  Google Scholar 

  • Van Dover, C. L., Grassle, J. R., Fry, B., Garritt, R. H., & Starczak, V. R. (1992). Stable isotope evidence for entry of sewage derived organic material into a deep sea food web. Nature, 360, 153–155.

    Article  Google Scholar 

  • Volkman, J. K., Holdsworth, D. G., Neill, G. P., & Bavor, H. J., Jr. (1992). Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environment, 112, 203–219.

    Article  CAS  Google Scholar 

  • Volkman, J. K., Holdsworth, D. G., & Richardson, D. E. (1993). Determination of resin acids by gas chromatography and high-performance liquid chromatography in paper mill effluent, river waters and sediments from the upper Derwent Estuary, Tasmania. Journal of Chromatography A, 643, 209–219.

    Article  CAS  Google Scholar 

  • Volkman, J. K., Barrett, S. M., Blackburn, S. I., et al. (1998). Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1163–1179.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Kelly-Hooper, F., et al. (2009). Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Journal of Chromatography A, 1216, 1174–1191. doi:10.1016/j.chroma.2008.12.036.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Yang, Z., et al. (2012). Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples. Journal of Environmental Monitoring, 14, 2367–2381.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Cretney, W. J., et al. (1993). Alkane, terpene, and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie Shelf: riverine contributions to Beaufort Sea coastal sediment. Geochimica et Cosmochimica Acta, 57, 3041–3061.

    Article  CAS  Google Scholar 

  • Zelles, L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35(1), 275–294.

    Article  CAS  Google Scholar 

  • Zheng, G. J., & Richardson, B. J. (1999). Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments. Chemosphere, 38, 2625–2632.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R., & Canuel, E. A. (2000). A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69(1), 117–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of SREL, Georgia University and the Fulbright fellowship of DSc Irena Atanassova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Atanassova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanassova, I., Mills, G. Biogenic and Anthropogenic Lipid Markers in Sediments from a Marsh Habitat Associated with the LCP Chemicals Superfund Site in Brunswick, Georgia, USA. Water Air Soil Pollut 227, 40 (2016). https://doi.org/10.1007/s11270-015-2740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2740-8

Keywords

Navigation