Skip to main content

Advertisement

Log in

Nature and Origin of Lipids in Clay Fractions from a Fluvisol in a Sewage Sludge Deposition Field

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Few studies on free lipids in total solvent extracts from soil clay fractions directly measured by gas chromatography–mass spectrometry (GC/MS) have been reported so far. In this study, we aimed to examine the free lipids in the clay fraction separated from a Fluvisol profile on which sewage sludge was deposited 6 years ago and provide information on the sources, diagenetic processes and organic pollutants derived from the sludge. Clay fractions were separated from the four horizons of a Fluvisol and analysed for the biochemically stable lipid pool. The GC/MS analysis of the lipid fraction showed that lipid signatures were dominated by alkanes (C17–C33), alkanoic acids (C12–C18), alkanols (C14–C30), aromatic acids and phthalate esters. Sources of lipids show predominant bacterial contribution as shown by the alkane, fatty acids and n-alkanol distributions. The preservation of lipids of microbial origin in the clay fraction was revealed by the presence of even number, branched alkanes and short-chain and branched fatty acids. These results imply that similar pedogenic processes took place in this soil profile affected by hydromorphic conditions with some quantitative changes in the clay lipid compositions between different soil horizons. Some aromatic acids and xenobiotics such as phthalates were detected in the lipid extracts of the clay fractions in depth (0–85 cm) of the soil profile, which has implications for pollution of soils and ground waters in situations of sewage sludge deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambles, A., Jambu, P., & Ntsikoussalabongui, B. (1989). Evolution des lipides naturels d’un podzol forestier induite par l’apport d’engrais min_eraux: Hydrocarbures, cetones, alcohols. Science du sol, 27, 201–214.

    CAS  Google Scholar 

  • Atanassova, I., & Brümmer, G. (2004). Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe. Geoderma, 120, 27–34.

    Article  CAS  Google Scholar 

  • Atanassova, I., Teoharov, M., Marinova, S., & Filcheva, E. (2006). Sewage sludge storage on soils around a wastewater treatment plant. Impact on some soil properties. Bulgarian Journal of Agricultural Science, 12, 51–62.

    Google Scholar 

  • Colina-Tejada, A., Amblès, A., & Jambu, P. (2005). Nature and origin of soluble lipids shed into the soil by rainwater leaching a forest cover of Pinus maritima sp. European Journal of Soil Science, 47, 637–643.

    Article  Google Scholar 

  • de Jonge, H., de Jonge, L. W., Blicher, B. W., & Moldrup, P. (2002). Transport of Di(2-ethylhexyl)phthalate (DEHP) applied with sewage sludge to undisturbed and repacked soil columns. Journal of Environmental Quality, 31, 1963–1971.

    Article  Google Scholar 

  • Folch, I., Vaquero, M. T., Comellas, L., & Broto-Puig, F. (1996). Extraction and clean-up methods for improvement of the chromatographic determination of polychlorinated biphenyls in sewage sludge-amended soils: Elimination of lipids and sulphur. Journal of Chromatography A, 719, 121–130.

    Article  CAS  Google Scholar 

  • Gorbunov, N. I. (1971). Metodi Mineralogicheskogo i mikromorfologicheskogo izucheniya pochv (Methods of mineralogical and micromorphological soil studies). Moscow: Nauka. In Russian.

    Google Scholar 

  • Grasset, L., & Ambles, A. (1998). Structure of humin and humic acid from an acid soil as revealed by phase transfer catalysed hydrolysis. Organic Geochemistry, 29, 881–891.

    Article  CAS  Google Scholar 

  • Grasset, L., Martinod, J., Plante, A. F., Amblès, A., Chenu, C., & Righi, D. (2009). Nature and origin of lipids in clay size fraction of a cultivated soil as revealed using preparative thermochemolysis. Organic Geochemistry, 40, 70–78.

    Article  CAS  Google Scholar 

  • Guggenberger, G., Zech, W., Haumaier, L., & Christensen, B. T. (1995). Land-use effects on the composition of organic matter in particle size separates of soil: II. CPMAS and solution 13C NMR analysis. European Journal of Soil Science, 46, 147–158.

    Article  CAS  Google Scholar 

  • Guggenberger, G., Pichler, M., Hartmann, R., & Zech, W. (1996). Polycyclic aromatic hydrocarbons in different forest soils: Mineral horizon. Zeitschrift für Pflanzenernährung und Bodenkunde, 159, 565–573.

    CAS  Google Scholar 

  • Ibañez, E., Borrós, S., Comellas, L., & Gassiot, M. (1997). Determination of β-hydroxy fatty acids in sewage sludge by using selected ion monitoring. Journal of Chromatography A, 775, 287–293.

    Article  Google Scholar 

  • Ibañez, E., Borrós, S., & Comellas, L. (2000). Quantification of sterols, 5α- and 5β-stanols in sewage sludge, manure and soils amended with these both potential fertilizers. Fresenius Journal of Analytical Chemistry, 366, 102–105.

    Article  Google Scholar 

  • Jaffé, R., Elismé, T., & Cabrera, A. C. (1996). Organic Geochemistry of seasonally flooded rain forest soils: Molecular composition and early diagenesis of lipid components. Organic Geochemistry, 25, 9–17.

    Article  Google Scholar 

  • Jalal, M. A. F., & Read, D. J. (1983). The organic acid composition of Calluna heathland soil with special reference to phyto- and fungitoxicity. Plant and Soil, 70, 257–272.

    Article  CAS  Google Scholar 

  • Jandl, G. P., Leinweber, H. R., Schulten, K., & Eusterhues, K. (2004). The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem. European Journal of Soil Science, 55, 459–470.

    Article  CAS  Google Scholar 

  • Kahle, M., Kleber, M., Torn, M. S., & Jahn, R. (2003). Carbon storage in coarse and fine clay fractions of illitic soils. Soil Science Society of America Journal, 67, 1732–1739.

    CAS  Google Scholar 

  • Kolattukudy, P. E. (1980). Biopolyester membranes of plants: Cutin and suberin. Science, 208, 990–1000.

    Article  CAS  Google Scholar 

  • Kolattukudy, P. E., Croteau, R., & Buckner, J. S. (1976). Chemistry and biochemistry of natural waxes. Amsterdam: Elsevier Science.

    Google Scholar 

  • Krauss, M., & Wilcke, W. (2002). Sorption strength of persistent organic pollutants in particle-size fractions of urban soils. Soil Science Society of America Journal, 66, 430–437.

    CAS  Google Scholar 

  • Laird, D. A., Martens, D. A., & Kingery, W. L. (2001). Nature of clay- humic complexes in an agricultural soil: I. Chemical, biochemical, and spectroscopic analyses. Soil Science Society of America Journal, 65, 1413–1418.

    Article  CAS  Google Scholar 

  • Leinweber, P., Blumenstein, O., & Schulten, H. R. (1996). Organic matter composition in sewage farm soils: Investigations by 13C-NMR and pyrolysis-field ionization mass spectrometry. European Journal of Soil Science, 47, 71–80.

    Article  Google Scholar 

  • Madsen, P. L., Thyme, J. B., Henriksen, K., Møldrup, P., & Roslev, P. (1999). Kinetics of Di-(2-ethylhexyl)phthalate mineralization in sludge-amended soil. Environmental Science & Technology, 33, 2601–2606.

    Article  CAS  Google Scholar 

  • Matscheko, M., Tysklind, M., de Wit, C., Bergek, S., Andersson, R., & Sellström, U. (2002). Application of sewage sludge to arable land–soil concentrations of polybrominated diphenyl ethers and polychorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls, and their accumulation in earthworms. Environmental Toxicology and Chemistry, 21, 2515–2525.

    CAS  Google Scholar 

  • Monreal, C. M., & Schnitzer, M. (2008). Soil organic matter in nano-composite and clay fractions, and soluble pools of the rhizosphere. Journal of Soil Science & Plant Nutrition, 8, 48–55.

    Google Scholar 

  • Moucawi, J., Fustec, E., Jambu, P., & Jacquesy, J. C. (1981). Decomposition of lipids in soils: Free and esterified fatty acids, alcohols and ketones. Soil Biology & Biochemistry, 13, 461–468.

    Article  CAS  Google Scholar 

  • Murphy, E. M., Zachara, J. M., & Smith, S. C. (1990). Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science and Technology, 24, 1507–1516.

    Article  CAS  Google Scholar 

  • Naafs, D. F. W., & van Bergen, P. F. (2002). A qualitative study on the chemical composition of ester-bound moieties in an acidic andosolic forest soil. Organic Geochemistry, 33, 189–199.

    Article  CAS  Google Scholar 

  • Naafs, D. F. W., van Bergen, P. F., Boogert, S. J., & de Leeuw, J. W. (2004a). Solvent-extractable lipids in an acid andic forest soil; variations with depth and season. Soil Biology & Biochemistry, 36, 297–308.

    Article  CAS  Google Scholar 

  • Naafs, D. F. W., van Bergen, P. F., de Jong, M. A., Oonincx, A., & de Leeuw, J. W. (2004b). Total lipid extracts from characteristic soil horizons in a podzol profile. European Journal of Soil Science, 55, 657–669.

    Article  CAS  Google Scholar 

  • Nierop, K. G. J., Naafs, D. F. W., & Verstraten, J. M. (2003). Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradient. Organic Geochemistry, 34, 719–729.

    Article  CAS  Google Scholar 

  • Padley, F. B., Gunstone, F. D., & Harwood, J. L. (1992). Occurrence and characteristics of oils and fats. In F. D. Gunstone, J. L. Harwood & F. B. Padley (Eds.), The lipid handbook (2nd ed., pp. 47–223). London: Chapman and Hall.

    Google Scholar 

  • Patureau, D., Laforie, M., Lichtfouse, E., Caria, G., Denaix, L., & Schmidt, J. E. (2007). Fate of organic pollutants after sewage sludge spreading on agricultural soils: A 30-years field-scale recording. Water Practice & Technology, 2, 10p.

    Google Scholar 

  • Quénéa, K., Derenne, S., Largeau, C., Rumpel, C., & Mariotti, A. (2004). Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Organic Geochemistry, 35, 1355–1370.

    Google Scholar 

  • Quénéa, K., Largeau, C., Derenne, S., Spaccini, R., Bardoux, G., & Mariotti, A. (2006). Molecular and isotopic study of lipids in particle size fractions of a sandy cultivated soil (Cestas cultivation sequence, southwest France): Sources, degradation, and comparison with Cestas forest soil. Organic Geochemistry, 37, 20–44.

    Article  CAS  Google Scholar 

  • Réveillé, V., Mansuy, L., Jardé, E., & Garnier-Sillam, E. (2003). Characterisation of sewage sludge-derived organic matter: Lipids and humic acids. Organic Geochemistry, 34, 615–627.

    Article  CAS  Google Scholar 

  • Rhind, S. M., Smith, A., Kyle, C. E., Telfer, G., Martin, G., Duff, E., et al. (2002). Phthalate and alkyl phenol concentrations in soil following applications of inorganic fertiliser or sewage sludge to pasture and potential rates of ingestion by grazing ruminants. Journal of Environmental Monitoring, 4, 142–148.

    Article  CAS  Google Scholar 

  • Rieley, G., Collier, R. J., Jones, D. M., & Eglinton, G. (1991). The biogeochemistry of Ellesmere Lake, U.K.-I. Source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 17, 901–912.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Langer, U. (2006). Microbial diversity in three floodplain soils at the Elbe River (Germany). Soil Biology & Biochemistry, 38, 2144–2151.

    Article  CAS  Google Scholar 

  • Schulten, H. R., & Schnitzer, M. (1990). Aliphatics in soil organic matter in fine-clay fractions. Soil Science Society of America Journal, 54, 98–105.

    Article  CAS  Google Scholar 

  • Schulten, H. R., Leinweberand, P., & Theng, B. K. G. (1996). Characterization of organic matter in an interlayer clay-organic complex from soil by pyrolysis methylation-mass spectrometry. Geoderma, 69, 105–118.

    Article  CAS  Google Scholar 

  • Schulten, H. R., & Leinweber, P. (2000). New insights into organic-mineral particles: Composition, properties and models of molecular structure. Biology and Fertility of Soils, 30, 399–432.

    Article  CAS  Google Scholar 

  • Teoharov, M., & Atanassova, A. (2006). Morphological and mineralogical analysis of alluvial meadow soils (fluvisols) from the region of Sofia wastewater treatment plant (WWTP). Bulgarian Journal of Agricultural Science, 12, 789–796.

    Google Scholar 

  • van Bergen, P. F., Bull, I. D., Poulton, P. R., & Evershed, R. P. (1997). Organic geochemical studies of soils from the Rothamsted classical experiments—I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness. Organic Geochemistry, 26, 117–135.

    Article  Google Scholar 

  • Wattel-Koekkoek, E. J. W., van Genuchten, P. P. L., Buurman, P., & van Lagen, B. (2001). Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma, 99, 27–49.

    Article  CAS  Google Scholar 

  • Wilcke, W., & Zech, W. (1998). Polychlorinated biphenyls (PCBs) in bulk soil and particle-size separates of soils in a rural community. Zeitschrift für Pflanzenernährung und Bodenkunde, 161, 289–295.

    CAS  Google Scholar 

  • Xu, G., Li, F., & Wang, Q. (2008). Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Science of the Total Environment, 393, 333–340.

    Article  CAS  Google Scholar 

  • Zelles, L. (1999). Fatty acids patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29, 11–129.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the AgroBioInstitute, Sofia, Bulgaria for providing the GC/MS facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Atanassova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanassova, I., Teoharov, M. Nature and Origin of Lipids in Clay Fractions from a Fluvisol in a Sewage Sludge Deposition Field. Water Air Soil Pollut 208, 295–304 (2010). https://doi.org/10.1007/s11270-009-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0167-9

Keywords

Navigation