Skip to main content

Advertisement

Log in

Optimization of a Fungally Bioaugmented Biomixture for Carbofuran Removal in On-Farm Biopurification Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biomixtures comprise the active part of biopurification systems (BPS) for the removal of pesticide-containing wastewater from agricultural origin. Considering that biomixtures contain an important amount of lignocellulosic substrates, their bioaugmentation with degrading ligninolytic fungi represents a promising way to improve BPS. The fungus Trametes versicolor was employed for the bioaugmentation of rice husk-compost-soil (GCS) biomixtures in order to optimize the removal of the highly toxic insecticide/nematicide carbofuran (CFN). Composition of biomixtures has not been optimized before, and usually, a volumetric composition of 50:25:25 (lignocellulosic substrate:humic component:soil) is employed. Optimization of the biomixture composition was performed with a central composite design, using the volumetric content of rice husk (pre-colonized by the fungus) and the volumetric ratio compost/soil as design variables. Performance of biomixtures was comprehensively assayed considering CFN removal, the production of toxic transformation products (3-hydroxycarbofuran/3-ketocarbofuran), the ability to mineralize [14C]carbofuran, and the residual toxicity in the matrix. According to the models, the optimal volumetric composition of the GCS biomixture is 30:43:27, which maximizes removal and mineralization rate, and minimizes the accumulation of transformation products. Results support the value of assessing new biomixture formulations according to the target pesticide in order to obtain their optimal performance, before their use in BPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bending, G. D., Friloux, M., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212, 59–63.

    Article  CAS  Google Scholar 

  • Castillo, M. P., Torstensson, L., & Stenström, J. (2008). Biobeds for environmental protection from pesticide use—a review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.

    Article  CAS  Google Scholar 

  • Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015). Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environmental Science and Pollution Research, 22, 9839–9848.

    Article  CAS  Google Scholar 

  • Coppola, L., Castillo, M. P., Monaci, E., & Vischetti, C. (2007). Adaptation of the biobed composition for chlorpyrifos degradation to southern Europe conditions. Journal of Agricultural and Food Chemistry, 55, 396–401.

    Article  CAS  Google Scholar 

  • Coppola, L., Castillo, M. P., & Vischetti, C. (2011). Degradation of isoproturon and bentazone in peat- and compost-based biomixtures. Pest Management Science, 67, 107–113.

    Article  CAS  Google Scholar 

  • Cruz-Morató, C., Ferrando-Climent, L., Rodríguez-Mozaz, S., Barceló, D., Marco-Urrea, E., Vicent, T., & Sarrà, M. (2013). Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Research, 47, 5200–5210.

    Article  Google Scholar 

  • D’Annibale, A., Ricci, M., Leonardi, V., Quaratino, D., Mincione, E., & Petruccioli, M. (2005). Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnology & Bioengineering, 90, 723–731.

    Article  Google Scholar 

  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402–1419.

    Article  CAS  Google Scholar 

  • de Roffignac, L., Cattan, P., Mailloux, J., Herzog, D., & Le Bellec, F. (2008). Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions. Pest Management Science, 64, 1303–1313.

    Google Scholar 

  • De Wilde, T., Spanoghe, P., Debaer, C., Ryckeboer, J., Springael, D., & Jaeken, P. (2007). Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Management Science, 63, 111–128.

    Article  Google Scholar 

  • EPA. (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual (EPA-823-B-01-002). Washington, DC: Office of Water (4305).

    Google Scholar 

  • EPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (EPA-821-R-02-012). Washington, DC: Office of Water (4303T).

    Google Scholar 

  • Fogg, P., Boxall, A. B. A., Walker, A., & Jukes, A. A. (2003). Pesticide degradation in a “biobed” composting substrate. Pest Management Science, 59, 527–537.

    Article  CAS  Google Scholar 

  • Font Segura, X., Gabarrell Durany, X., Ramos Lozano, D., & Vicent Huguet, T. (1993). Detoxification pretreatment of black liquor derived from non-wood feedstock with white-rot fungi. Environmental Technology, 14, 681–687.

    Article  Google Scholar 

  • Fragoeiro, S., & Magan, N. (2008). Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. International Biodeterioration and Biodegradation, 62, 376–383.

    Article  CAS  Google Scholar 

  • Gupta, R. C. (1994). Carbofuran toxicity. Journal of Toxicology and Environmental Health, 43, 383–418.

    Article  CAS  Google Scholar 

  • Karanasios, E., Tsiropoulos, N. G., Karpouzas, D. G., & Ehaliotis, C. (2010). Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe. Journal of Agricultural and Food Chemistry, 58, 9147–9156.

    Article  CAS  Google Scholar 

  • Kravvariti, K., Tsiropoulos, N. G., & Karpouzas, D. G. (2010). Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Management Science, 66, 1122–1128.

    Article  CAS  Google Scholar 

  • Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2015). Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems. Biology and Fertility of Soils. doi:10.1007/s00374-015-1071-7.

    Google Scholar 

  • Mir-Tutusaus, J. A., Masís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal, G., Vicent, T., & Rodríguez-Rodríguez, C. E. (2014). Degradation of selected agrochemicals by the white-rot fungus Trametes versicolor. Science of the Total Environment, 500–501, 235–242.

    Article  Google Scholar 

  • Novotný, Č., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J., & Zadražil, F. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 159–168.

    Article  Google Scholar 

  • Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of Hazardous Materials, 140, 325–332.

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., & Vicent, T. (2011). Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresource Technology, 102, 5602–5608.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Jelić, A., Pereira, M. A., Sousa, D. Z., Petrović, M., Alves, M. M., Barceló, D., Caminal, G., & Vicent, T. (2012). Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Environmental Science & Technology, 46, 12012–12020.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Castro Gutiérrez, V., Chin-Pampillo, J. S., & Ruiz-Hidalgo, K. (2013). On-farm biopurification systems: role of white rot fungi in depuration of pesticide containing wastewaters. FEMS Microbiology Letters, 345, 1–12.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Lucas, D., Barón, E., Gago-Ferrero, P., Molins-Delgado, D., Rodríguez-Mozaz, S., Eljarrat, E., Díaz-Cruz, M. S., Barceló, D., Caminal, G., & Vicent, T. (2014). Re-inoculation strategies enhance the degradation of emerging pollutants by fungal bioaugmentation in sewage sludge. Bioresource Technology, 168, 180–189.

    Article  Google Scholar 

  • Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Carazo, R. E., & Rodríguez-Rodríguez, C. E. (2014). Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochemistry, 49, 2266–2271.

    Article  CAS  Google Scholar 

  • Sniegowski, K., Bers, K., Van Goetem, K., Ryckeboer, J., Jaeken, P., Spanoghe, P., & Springael, D. (2012). Minimal pesticide-primed soil inoculum density to secure maximum pesticide degradation efficiency in on-farm biopurification systems. Chemosphere, 88, 1114–1118.

    Article  CAS  Google Scholar 

  • Tortella, G. R., Rubilar, O., Cea, M., Wulff, C., Martínez, O., & Diez, M. C. (2010). Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination. Journal of Soil Science and Plant Nutrition, 10, 464–475.

    Article  Google Scholar 

  • Tortella, G. R., Rubilar, O., Castillo, M. P., Cea, M., Mella-Herrera, R., & Diez, M. C. (2012). Chlorpyrifos degradation in a biomixture of biobed at different maturity stages. Chemosphere, 88, 224–228.

    Article  CAS  Google Scholar 

  • Tortella, G. R., Durán, N., Rubilar, O., Parada, M., & Diez, M. C. (2013a). Are white-rot fungi a real biotechnological option for the improvement of environmental health? Critical Reviews in Biotechnology, 35, 165–172.

    Article  Google Scholar 

  • Tortella, G. R., Rubilar, O., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013b). Natural wastes rich in terpenes and their relevance in the matrix of an on-farm biopurification system for the degradation of atrazine. International Biodeterioration & Biodegradation, 85, 8–15.

    Article  CAS  Google Scholar 

  • Tortella, G. R., Rubilar, O., Stenström, J., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013c). Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation, 24, 711–720.

    Article  CAS  Google Scholar 

  • Urrutia, C., Rubilar, O., Tortella, G. R., & Diez, M. C. (2013). Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes. Chemosphere, 92, 1361–1366.

    Article  CAS  Google Scholar 

  • Verhagen, P., De Gelder, L., & Boon, N. (2013). Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Current Microbiology, 67, 466–471.

    Article  CAS  Google Scholar 

  • Verhagen, P., Destino, C., Boon, N., & De Gelder, L. (2015). Spatial heterogeneity in degradation characteristics and microbial community composition of pesticide biopurification systems. Journal of Applied Microbiology, 118, 368–378.

    Article  CAS  Google Scholar 

  • von Wirén-Lehr, S., Castillo, M. P., Torstensson, L., & Scheunert, I. (2001). Degradation of isoproturon in biobeds. Biology and Fertility of Soils, 33, 535–540.

    Article  Google Scholar 

  • Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresource Technology, 141, 97–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Vicerrectoría de Investigación, Universidad de Costa Rica (projects 802-B2-046, 802-B4-503, and 802-B4-609), the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (project FI-093-13/802-B4-503), and the Joint FAO/IAEA (project TC COS5/029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Rodríguez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Hidalgo, K., Chin-Pampillo, J.S., Masís-Mora, M. et al. Optimization of a Fungally Bioaugmented Biomixture for Carbofuran Removal in On-Farm Biopurification Systems. Water Air Soil Pollut 227, 3 (2016). https://doi.org/10.1007/s11270-015-2681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2681-2

Keywords

Navigation