Skip to main content
Log in

Natural Occurrence of Arsenic in Groundwater from Lesvos Island, Greece

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A geochemical analysis and modelling was carried out to investigate the As occurrence and release in groundwater from two different geological environments on Lesvos Island: (i) the volcanic area of Mandamados (ignimbrite of rhyolithic to rhyodacitic composition) and (ii) the metamorphic area of Tarti (schists and marbles) that comprises the geologic basement under ignimbrite. Seven sampling campaigns were conducted between October 2010 and October 2011, including 65 groundwater samples from 11 wells and springs. Chemical analyses showed As concentrations exceeding the 10-μg/L national drinking water limit in 46 % of the samples from Mandamados. Groundwater composition in Mandamados evolved from Ca-HCO3 type, to mixed type and finally to Na-Cl type along the groundwater flow direction, indicating the contribution of ion exchange in groundwater chemical composition, while Ca-HCO3 type waters were observed in the Tarti area. Arsenic speciation analysis showed that As(V) was the main species in all samples, indicating that As was released under oxidizing conditions. Statistical analysis suggested silicate weathering as the prime mechanism of As release in groundwater in both cases, while, in the Tarti area, carbonate dissolution may represent a secondary mechanism which could be related to the observed relatively low As concentrations in the region. In both areas, pH-related desorption of As, primarily from Fe mineral phases, was found to be the most important factor controlling the mobilisation of As, while the contribution of the redox control to As release in groundwater was generally found to be less significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aloupi, M., Angelidis, M., Gavriil, A., Koulousaris, M., & Varnavas, S. (2009). Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece. Environmental Monitoring and Assessment, 151, 383–396.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S., & Kato, K. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Ballantyne, J. M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R., Storniolo, A., & Thir, J. (2006). Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.

    Article  CAS  Google Scholar 

  • Biswas, A., Nath, B., Bhattacharya, P., Halder, D., Kundu, A. K., Mandal, U., Mukherjee, A., Chatterjee, D., Mörth, C., & Jacks, G. (2012). Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Science of the Total Environment, 431, 402–412.

    Article  CAS  Google Scholar 

  • Blanco, M. D. C., Paoloni, J. D., Morrás, H. J., Fiorentino, C. E., & Sequeira, M. E. (2006). Content and distribution of arsenic in soils, sediments and groundwater environments of the Southern Pampa Region, Argentina. Environmental Toxicology, 21(6), 561–574.

  • Bundschuh, J., Farias, B., Martin, R., Storniolo, A., Bhattacharya, P., Cortes, J., et al. (2004). Groundwater arsenic in the Chaco–Pampean Plain, Argentina: case study from Robles country, Santiago del Estero Province. Applied Geochemistry, 19, 231–243.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Roman-Ross, G., Nicolli, H. B., et al. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • EPA. (2003). Standard Operating Procedure (SOP) for ground water sampling. New England: Environmental Protection Agency.

    Google Scholar 

  • EPA. (2006). Data quality assessment: statistical methods for practitioners, Environmental Protection Agency. EPA QA/G-9S.

  • Fytianos, K., & Christophoridis, C. (2004). Nitrate, arsenic and chloride pollution of drinking water in northern Greece. Elaboration by applying GIS. Environmental Monitoring and Assessment, 93, 55–67.

    Article  CAS  Google Scholar 

  • García, M. G., Sracek, O., Fernández, D. S., & Hidalgo, M. D. V. (2007). Factors affecting arsenic concentration in groundwaters from Northwestern Chaco-Pampean Plain, Argentina. Environmental Geology, 52, 1261–1275.

    Article  Google Scholar 

  • Guo, H., Zhang, D., Wen, D., Wu, Y., Ni, P., Jiang, Y., Guo, Q., Li, F., Zheng, H., & Zhou, Y. (2014). Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: evidences from chemical and isotopic characteristics. Science of the Total Environment, 490, 590–602.

    Article  CAS  Google Scholar 

  • Harvey, C., Swartz, C. H., Badruzzaman, A. B. M., Blute, N. K., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Hecht, J. (1971–1974). Geologic map of Lesvos Island (5 sheets). Athens: (Hellenic) National Institute of Geological and Mining Research (IGME).

  • ISO (2007). Water quality - Determination of dissolved anions by liquid chromatography of ions Part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate. International Organization for Standardization, ISO 10304-1:2007.

  • Katsoyiannis, I. A., & Katsoyiannis, A. A. (2006). Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. Environmental Monitoring and Assessment, 123, 393–406.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383, 128–140.

    Article  CAS  Google Scholar 

  • Kelepertsis, A., Alexakis, D., & Skordas, K. (2006). Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environmental Geology, 50, 76–84.

    Article  CAS  Google Scholar 

  • Komnitsas, K., Xenidis, A., & Adam, K. (1995). Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion. Minerals Engineering, 12, 1443–1454.

    Article  Google Scholar 

  • Kontis, E. E., & Gaganis, P. (2012). Hydrochemical characteristics and groundwater quality in the island of Lesvos, Greece. Global Nest Journal, 14(4), 422–430.

    Google Scholar 

  • Kouras, A., Katsoyiannis, I., & Voutsa, D. (2007). Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. Journal of Hazardous Materials, 147, 890–899.

    Article  CAS  Google Scholar 

  • Lambrakis, N. J., & Stamatis, G. N. (2008). Contribution to the study of thermal waters in Greece: chemical patterns and origin of thermal water in the thermal springs of Lesvos. Hydrological Processes, 22, 171–180.

    Article  CAS  Google Scholar 

  • Lamera, S. (2004). The Polychnitos Ignimbrite of Lesvos Island, PhD Thesis, Department of Geology, University of Patra (in Greek).

  • López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., Cornejo, L., & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 429, 57–75.

    Article  Google Scholar 

  • Meng, X., & Wang, W. (1998). Speciation of arsenic by disposable cartridges. Third International Conference on Arsenic Exposure and Health Effects, San Diego, CA, July 12–15.

  • Meng, X., Korfiatis, G. P., Christodoulatos, C., & Bang, S. (2001). Treatment of Bangladesh well water using a household co-precipitation and filtration system. Water Research, 35, 2508–2810.

    Article  Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23, 863–894.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravencroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Suriano, J. M., Gómez Peral, M. A., Ferpozzi, L. H., & Baleani, O. M. (1989). Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environmental Geology and Water Sciences, 14, 3–16.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Bundschuh, J., García, J. W., Falco, C. M., & Jean, J. S. (2010). Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Water Research, 44(19), 5589–5604.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Bundschuh, J., Blanco, M. D. C., Tujchneider, O. C., Panarello, H. O., Dapeña, C., & Rusansky, J. E. (2012). Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Science of the Total Environment, 429, 36–56.

    Article  CAS  Google Scholar 

  • O.G.G. (2001). Quality of water intended for human consumption, in compliance to the Council Directive 98/83/ EC of 3 November 1998 (Joint Ministerial Decision Υ2/ 2600/2001). Official Government Gazette of the Hellenic Republic (O.G.G.), Issue B’, No 892.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report 99-4259, Denver, CO, USA.

  • Pe-Piper, G. (1980). Geochemistry of Shoshonites, Lesbos Greece. Contributions to Mineralogy and Petrology, 72, 387–396.

    Article  CAS  Google Scholar 

  • Rango, T., Vengosh, A., Dwyer, G., & Bianchini, G. (2013). Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Water Research, 47, 5801–5818.

    Article  CAS  Google Scholar 

  • Raychowdhury, N., Mukherjee, A., Bhattacharya, P., Johannesson, K., Bundschuh, J., Sifuentes, G., Nordberg, E., Martin, R., & Storniolo, A. (2014). Provenance and fate of arsenic and other solutes in the Chaco-Pampean: plain of the Andean foreland, Argentina: from perspectives of hydrogeochemical modeling and regional tectonic setting. Journal of Hydrology, 518, 300–316.

    Article  CAS  Google Scholar 

  • Rodriguez, R., Ramos, J. A., & Armienta, A. (2004). Groundwater arsenic variation: the role of local geology and rainfall. Applied Geochemistry, 19, 245–250.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas USA. Applied Geochemistry, 24, 2061–2071.

    Article  CAS  Google Scholar 

  • Sdao, F., Parisi, S., Kalisperi, D., Pascale, S., Soupios, P., Lydakis-Simantiris, N., & Kouli, M. (2012). Geochemistry and quality of the groundwater from the karstic and coastal aquifer of Geropotamos River Basin at north-central Crete, Greece. Environmental Earth Science, 67, 1145–1153.

    Article  CAS  Google Scholar 

  • Sengupta, S., Sracek, O., Jean, J. S., Lu, H. Y., Wang, C. H., Palcsu, L., Liu, C. C., Jen, C. H., & Bhattacharya, P. (2014). Spatial variation of groundwater arsenic distribution in the Chianan Plain, SW Taiwan: role of local hydrogeological factors and geothermal sources. Journal of Hydrology, 518, 393–409.

    Article  CAS  Google Scholar 

  • Shamsudduha, M., Marzen, L. J., Uddin, A., Lee, M. K., & Saunders, J. A. (2009). Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh. Environmental Geology, 57, 1521–1535.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J., & Tullioc, J. O. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Zhang, M., Zhang, G., & Luo, Z. (2003). Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18, 1453–1477.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., Nicolli, H. B., Barros, A. J., Tullio, J. O., Pearce, J. M., & Alonso, M. S. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989–1016.

    Article  CAS  Google Scholar 

  • Sracek, O., Bhattachayra, P., Jacks, G., Gustafsson, J. P., & von Bromssen, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aquatic environments. Applied Geochemistry, 19, 169–180.

    Article  CAS  Google Scholar 

  • Stamatis, G., Alexakis, D., Gamvroula, D., & Migiros, G. (2011). Groundwater quality assessment in Oropos–Kalamos basin, Attica, Greece. Environmental Earth Science, 64, 973–988.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: Wiley-Interscience.

    Google Scholar 

  • Tyrovola, K., Nikolaidis, N. P., Veranis, N., Kallithrakas-Kontos, N., & Koulouridakis, P. E. (2006). Arsenic removal from geothermal waters with zero-valent iron—effect of temperature, phosphate and nitrate. Water Research, 40, 2375–2386.

    Article  CAS  Google Scholar 

  • USEPA. (2001). The arsenic and clarifications to compliance and new source contaminants monitoring. US Environmental Protection Agency, 66 FR 6976.

  • USEPA. (2007). Method 6020A, 2007, inductively coupled plasma-mass spectrometry. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Welch, A., & Lico, M. (1998). Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 13, 521–539.

    Article  CAS  Google Scholar 

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  CAS  Google Scholar 

  • WHO. (2001). Environmental health criteria 224, arsenic and arsenic compounds. Inter-organization programme for the sound management of chemicals. Geneva: World Health Organization.

    Google Scholar 

  • WHO (2011). Guidelines for drinking-water quality. (4th ed.), World Health Organization, On line: http://www.who.int/publications/2011/9789241548151_eng.pdf. Accessed 02 April 2015.

Download references

Acknowledgments

E. Zkeri would like to thank the Greek State Scholarships Foundation (I.K.Y.) for funding this research. The authors highly appreciate the help of Professor N. Nikolaidis and M.L. Saru for the trace elements analysis in ICP-MS at the Laboratory of Hydrogeochemical Engineering and Remediation of Soils, Department of Environmental Engineering, Technical University of Crete. Also, they are thankful to Professor S. Pergantis for the trace elements analysis in ICP-MS at the Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete. E. Zkeri would like to thank the Chairetakis family for the accommodation provided in Crete during the sample analyses, and M. Polatidou and V. Mystegniotis for their help in the sampling campaigns. Lastly, we would like to thank the two anonymous reviewers for their support and comments that improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini Zkeri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 28 kb)

ESM 2

(DOC 297 kb)

ESM 3

(DOC 114 kb)

ESM 4

(DOC 128 kb)

ESM 5

(DOC 139 kb)

ESM 6

(DOC 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zkeri, E., Aloupi, M. & Gaganis, P. Natural Occurrence of Arsenic in Groundwater from Lesvos Island, Greece. Water Air Soil Pollut 226, 294 (2015). https://doi.org/10.1007/s11270-015-2542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2542-z

Keywords

Navigation