Skip to main content
Log in

Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Grape stalks, a low-cost agro-industrial by-product, were used for the first time as a biosorbent for the removal of uranium from aquatic systems. Basic operating conditions (effect of pH, biosorbent dose, uranium initial concentration, and kinetics) were investigated, and the sorption mechanism was explored. The proposed biosorbent’s efficiency to sequester uranium from different profile aquatic systems was assessed, as well as the potential uranium recovery. Biosoprtion performance increased progressively from pH 1.5 to 4.5, and uranium uptake was a rapid process, where film diffusion was the determining step. Maximum uptake ranged from 90 to 115 mg U(VI) g−1 at 15–33 °C, respectively. None of the commonly used adsorption models (Langmuir, Freundlich, Dubinin-Radushkevich) was able to describe the experimental isotherms, whereas the linear model seems to provide the best fit. Kinetic and thermodynamic data implied that both physical and chemical sorption are involved in the process. Species calculation experiments showed that only positively charged and uncharged uranium species can be retained on the biomass. Quantitative uranium recovery was achieved by mild desorbing agents at concentrations as low as 0.1 M. Therefore, grape stalks seem to be a promising biosorbent due to their high sequestration capacity even under high salinity and acidity conditions, low cost, and easy regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, W. A., Jaapar, J., & Zahari, M. A. K. M. (2004). Removal of heavy metals from wastewater. In A. Pandey (Ed.), Concise encyclopedia of bioresource technology (pp. 152–157). NY: The Haworth Press Inc.

    Google Scholar 

  • Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., & Walker, G. M. (2006). Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 40, 2645–2658.

    Article  CAS  Google Scholar 

  • Aldor, I., Fourest, E., & Volesky, B. (1995). Desorption of cadmium from algal biosorbent. Canadian Journal of Chemical Engineering, 73, 516–522.

    Article  CAS  Google Scholar 

  • Anagnostopoulos, V., Bekatorou, A., & Symeopoulos, B. (2011). Contribution to interpretation of metal uptake dependence upon the growth phase of microorganisms. The case of uranium (VI) uptake by common yeasts, cultivated at different temperatures, with or without aeration. Journal of Radioanalytical and Nuclear Chemistry, 287, 665–671.

    Article  CAS  Google Scholar 

  • Anayurt, R. A., Sari, A., & Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151, 255–261.

    Article  CAS  Google Scholar 

  • Belgacem, A., Rebiai, R., Hadoun, H., Khemaissia, S., & Belmedani, M. (2014). The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environmental Science and Pollution Research, 21, 684–694.

    Article  CAS  Google Scholar 

  • Bogolepov, A. A., Kobets, S. A., & Pshinko, G. N. (2009). Desorption of U(VI) from montmorillonite with aluminum and iron hydroxides deposited on its surface. Radiochemistry, 51, 301–307.

    Article  CAS  Google Scholar 

  • Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2006). How metal (hydr)oxides are protonated in aqueous media: the (n + 1) rule and the role of the interfacial potential. Journal of Colloid and Interface Science, 296, 389–395.

    Article  CAS  Google Scholar 

  • Boyd, G. E., Adamson, A. W., & Myers, L. S., Jr. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites II. Kinetics. Journal of the American Chemical Society, 69, 2836–2848.

    Article  CAS  Google Scholar 

  • Cantrell, K.J., Serne, R.J., Last, G. V., (2002). Applicability of the linear sorption isotherm model to represent contaminant transport processes in site-wide performance assessments. PNNL-14576, U.S. Springfield, VA: Department of Energy.

  • Cecal, A., Humelnicu, D., Rudic, V., Cepoi, L., Ganju, D., & Cojocari, A. (2012). Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga. Bioresource Technology, 118, 19–23.

    Article  CAS  Google Scholar 

  • Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98, 2897–2904.

    Article  CAS  Google Scholar 

  • Deze, E. G., Papageorgiou, S. K., Favvas, E. P., & Katsaros, F. K. (2012). Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chemical Engineering Journal, 209, 537–546.

    Article  CAS  Google Scholar 

  • Dupont, L., & Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37, 4235–4241.

    Article  CAS  Google Scholar 

  • Ferraz, A. I., Tavares, T., & Teixeira, J. A. (2004). Cr(III) removal and recovery from Saccharomyces cerevisiae. Chemical Engineering Journal, 105, 11–20.

    Article  CAS  Google Scholar 

  • Fiol, N., Escudero, C., & Villaescusa, I. (2008). Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 99, 5030–5036.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742.

    Article  CAS  Google Scholar 

  • Hritcu, D., Humelnicu, D., Dodi, G., & Popa, M. I. (2012). Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers, 87, 1185–1191.

    Article  CAS  Google Scholar 

  • Jakob, A. (1997). Modelling solute transport using the double porous medium approach. In I. Grenthe & I. Puigdomenech (Eds.), Modelling in aquatic chemistry. Paris: OECD.

    Google Scholar 

  • Khani, M. (2011). Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environmental Science and Pollution Research, 18, 1593–1605.

    Article  CAS  Google Scholar 

  • Khani, M. H., Pahlavanzadeh, H., & Alizadeh, K. (2012). Biosorption of strontium from aqueous solution by fungus Aspergillus terreus. Environmental Science and Pollution Research, 19, 2408–2418.

    Article  CAS  Google Scholar 

  • Konstantinou, M., & Pashalidis, I. (2007). Adsorption of hexavalent uranium on biomass by-product. Journal of Radioanalytical and Nuclear Chemistry, 273, 549–552.

    Article  CAS  Google Scholar 

  • Kumar, D., & Gaur, J. P. (2011). Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology, 102, 633–640.

    Article  CAS  Google Scholar 

  • Kuyucak, N., & Volesky, B. (1989). Desorption of cobalt- laden algal biosorbent. Biotechnology and Bioengineering, 33, 815–822.

    Article  CAS  Google Scholar 

  • Landa, E. (2003). Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments. Journal of Radioanalytical and Nuclear Chemistry, 255, 559–563.

    Article  CAS  Google Scholar 

  • Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C., & Favere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal of Hazardous Materials, 149, 471–474.

    Article  CAS  Google Scholar 

  • Liu, Y., & Xu, H. (2007). Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochemical Engineering Journal, 35, 174–182.

    Article  CAS  Google Scholar 

  • Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., & Poch, J. (2006). Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 133, 203–211.

    Article  Google Scholar 

  • Moghaddam, M. R., Fatemi, S., & Keshtkar, A. (2013). Adsorption of lead (Pb2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chemical Engineering Journal, 231, 294–303.

    Article  CAS  Google Scholar 

  • Müller, K., Foerstendorf, H., Tsushima, S., Brendler, V., Bernhard, G., & Jaapar, J. (2009). Direct spectroscopic characterization of aqueous actinyl(VI) species: a comparative study of Np and U. The Journal of Physical Chemistry. A, 113, 6626–6632.

    Article  Google Scholar 

  • Naja, G., Mustin, C., Volesky, B., & Berthelin, J. (2005). A high resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Research, 39, 579–586.

    Article  CAS  Google Scholar 

  • Naja, G., Murphy, V., Volesky, B. (2009). Biosorption, metals. In: M. C. Flickinger (Hrsg.), Encyclopedia of Industrial Biotechnology Bioprocess, Bioseparation, and Cell Technology (pp. 4500). Wiley.

  • Özcan, A. S., & Özcan, A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. Journal of Colloid and Interface Science, 276, 39–46.

    Article  Google Scholar 

  • Pang, C., Liu, Y.-H., Cao, X.-H., Li, M., Huang, G.-L., Hua, R., Wang, C.-X., Liu, Y.-T., & An, X.-F. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal, 170, 1–6.

    Article  CAS  Google Scholar 

  • Prodromou, M., & Pashalidis, I. (2013). Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 298, 1587–1595.

    Article  CAS  Google Scholar 

  • Saǧ, Y., & Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 6, 145–151.

    Article  Google Scholar 

  • Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International Biodeterioration & Biodegradation, 44, 101–110.

    Article  CAS  Google Scholar 

  • Sarri, S., Misaelides, P., Papanikolaou, M., & Zamboulis, D. (2009). Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. Journal of Radioanalytical and Nuclear Chemistry, 279, 709–711.

    Article  CAS  Google Scholar 

  • Sciban, M., Klasnja, M., & Skrbic, B. (2006). Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials, 136, 266–271.

    Article  CAS  Google Scholar 

  • Sciban, M., Radetic, B., Kevresan, Z., & Klasnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98, 402–409.

    Article  CAS  Google Scholar 

  • Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E. M., & Buszewski, B. (2011). Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171, 1185–1193.

    Article  CAS  Google Scholar 

  • Tsezos, M. (1989). Recovery of uranium from biological adsorbents. Desorption equilibrium. Biotechnology and Bioengineering, 26, 973–981.

    Article  Google Scholar 

  • Tsezos, M., Georgousis, Z., & Remoudaki, E. (1997). Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 55, 16–27.

    Article  CAS  Google Scholar 

  • Ucun, H., Aksakal, O., & Yildiz, E. (2009). Copper(II) and zinc(II) biosorption on Pinus sylvestris L. Journal of Hazardous Materials, 161, 1040–1045.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2007). Copper desorption from Gelidium algal biomass. Water Research, 41, 1569–1579.

    Article  CAS  Google Scholar 

  • Villaescusa, I., Fiol, N., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38, 992–1002.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and biosorption. Montreal: SV Sorbex Inc.

    Google Scholar 

  • Voudrias, E., Fytianos, K., & Bozani, E. (2002). Sorption–desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest Journal, 4, 75–83.

  • Wang, S., & Ariyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. Journal of Colloid and Interface Science, 314, 25–31.

    Article  CAS  Google Scholar 

  • Wang, X. A., Xia, L.-S., Zheng, W.-N., & Tan, K.-X. (2010). Adsorption behavior and mechanism of uranium (VI) on modified wheat straw. The Chinese Journal of Process Engineering, 10, 1084–1090.

    Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division: The American Society of Civil Engineers, 89, 31–60.

    Google Scholar 

  • Zheng, W.-N., Xia, L.-S., Wang, X., & Tan, K.-X. (2011). Adsorption behavior and mechanism of uranium by chaff. Atomic Energy Science and Technology, 45, 534–540.

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Regional Development Fund (ERDF)) and Greek national funds through the Operational Program “Regional Operational Programme” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Support for research, technology and innovation actions in Region of Western Greece.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios A. Anagnostopoulos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 227 kb)

ESM 2

(PDF 89 kb)

ESM 3

(PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagnostopoulos, V.A., Koutsoukos, P.G. & Symeopoulos, B.D. Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies. Water Air Soil Pollut 226, 107 (2015). https://doi.org/10.1007/s11270-015-2379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2379-5

Keywords

Navigation