Skip to main content
Log in

Biosorption of Cu2+ and Ni2+ Ions from Synthetic Waters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, biosorption of Cu2+ and Ni2+ ions to tobacco stalks was investigated under different operational conditions. The effects of the initial pH, ion concentrations, temperature, and duration of contact and adsorbent dosage were determined in the batch experiments. Chemical oxygen demand (COD) analyses were also performed to identify the possible negative effects of the sorbent throughout biosorption process. The sorption capacities of this sorbent were predicted by use of the equilibrium and kinetic models. Within the scope of kinetic study, it was observed that biosorption fitted to second-order pseudo kinetic rate expression. The highest R 2 value in isotherm studies was obtained from Freundlich isotherm (R 2 = 0.9940–0.9929) for the inlet concentration. FTIR, SEM, and EDX analyses were performed to investigate the surface characteristics and chemical structure of the biosorbent. Under optimum conditions, qe value for Cu2+ was determined as 7.18 mg/g and removal efficiency was 86.24%; qe value for Ni2+ was determined as 6.45 mg/g and removal efficient was 77.4%. Sorbent recovery process was also performed within the scope of this study with 0.1 M H2SO4, 0.1 M HCl, and distilled water. A significant decrease was observed in efficiency when the recovered sorbent was reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions. Bioresource Technology, 99, 6017–6027.

    Article  CAS  Google Scholar 

  2. Garg, U. K., Kaur, M. P., Garg, V. K., & Sud, D. (2007). Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. Journal Hazardous Material, 140, 60–68.

    Article  CAS  Google Scholar 

  3. El-Naas, M. H., Abu Al-Rub, F., Ashour, I., & Al-Marzouqi, M. (2007). Effect of competitive interference on the biosorption of lead (II) by Chlorella vulgaris. Chemical Engineering and Processing, 46, 1391–1399.

    Article  CAS  Google Scholar 

  4. Markou, G., Mitrogiannis, D., Celekli, A., Bozkurt, H., & Georgakakis, D. (2015). Chrysikopoulos CV. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chemical Engineering Journal, 259, 806–813.

    Article  CAS  Google Scholar 

  5. Sternberg, P. K., & Dorn, W. (2002). Cadmium removal using Cladophora in batch, semi batch and flow reactors. Bioresource Technology, 81, 249–255.

    Article  CAS  Google Scholar 

  6. Praveen, R. S., & Vijayaraghavan, K. (2015). Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga Kappaphycus alvarezii. Desalination and Water Treatment, 55, 1816–1824.

    Article  CAS  Google Scholar 

  7. Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.

    Article  CAS  Google Scholar 

  8. Gwenzi, W., Musarurwa, T., Nyamugafata, P., Chaukura, N., Chaparadza, A., and Mbera, S. (2014). Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth (Eichhornia crassipes). Water Science and Technology, 1419–1427.

  9. Putra, WP., Kamari, A., Yusoff, S.N.M., Ishak, CF., Mohamed, A., Hashim, N., Isa, I.M. (2014). Biosorption of Cu(II), Pb(II) and Zn(II) Ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. Journal of Encapsulation and Adsorption Sciences, 4, 25–35.

  10. Kılıç, Z., Atakol, O., Aras, S., Duman, D. C., Çelikkol, P., & Emregül, E. (2014). Evaluation of different isotherm models, kinetic, thermodynamic, and copper biosorption efficiency of Lobaria pulmonaria (L.) Hoffm. Journal of the Air & Waste Management Association, 64(1), 115–123.

    Article  Google Scholar 

  11. Hossain, M. A., Ngo, H. H., Guo, W. S., & Setiati, T. (2012). Adsorption and desorption of copper(II) ions onto garden grass. Bioresource Technology, 121, 386–395.

    Article  CAS  Google Scholar 

  12. Rozaini, C. A., Jain, K., Oo, C. W., Tan, K. W., Tan, L. S., Azraa, A., & Tong, K. S. (2010). Optimization of nickel and copper ions removal by modified mangrove barks. International Journal of Chemical Engineering and Applications, 1(1), 84–89.

    Article  CAS  Google Scholar 

  13. Agarwal, A. K., Kadu, S. M., Pandhurnekar, C. P., & Muthreja, I. L. (2013). Removal of nickel (II) ions from aqueous solution using thermal power plant fly ash as a low cost adsorbent adsorption isotherm and kinetics study. International Journal of Environmental Protection, 3(3), 33–43.

    Google Scholar 

  14. Aikpokpodion, P. E., Ipinmoroti, R. R., & Omotoso, S. M. (2010). Biosorption of nickel (II) from aqueous solution using waste tea (Camella cinencis) materials. American-Eurasian Journal of Toxicological Sciences, 2(2), 72–82.

    Google Scholar 

  15. Jina, Y., Wua, Y., Caob, J., & Wuc, Y. (2015). Adsorption behavior of Cr(VI), Ni(II), and Co(II) onto zeolite 13x. Desalination and Water Treatment, 54, 511–524.

    Article  Google Scholar 

  16. Zadavıčıūtė, S., Baltakys, K., & Eısınas, A. (2015). Adsorption kinetic parameters of Fe3+ and Ni2+ ions by gyrolite. Materials Science (Medžıagotyra), 21(1), 117–122.

    Google Scholar 

  17. Kunnambath, PM., Thirumalaisamy, S. (2015). Characterization and utilization of tannin extract for the selective adsorption of Ni (II) ions from water. Hindawi Publishing Corporation Journal of Chemistry, 9 pages.

  18. Akbari, M., Hallajisani, A., Keshtkar, A. R., Shahbeig, H., & Ghorbanian, S. A. (2015). Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C indica. Journal of Environmental Chemical Engineering, 3, 140–149.

    Article  CAS  Google Scholar 

  19. Hannachi, Y., Shapovalov, N. A., & Hannachi, A. (2010). Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Korean Journal of Chemical Engineering, 27(1), 152–158.

    Article  CAS  Google Scholar 

  20. Başıbüyük, M., & Forster, C. F. (2003). An examination of adsorption characteristics of basic dye on to live activated sludge system. Process Biochemistry, 38, 1311–1316.

    Article  Google Scholar 

  21. Ghoreishi, S. M., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 95, 163–152.

    Article  CAS  Google Scholar 

  22. Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. (2003). Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology, 88(2), 143–152.

    Article  CAS  Google Scholar 

  23. Sarı, A., Mendil, D., Tuzen, M., & Soylak, M. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144, 1–9.

    Article  Google Scholar 

  24. Ho, Y. S., & Chiang, C. C. (2001). Sorption studies of acid dye by mixed sorbents. Adsorption, 7, 139–147.

    Article  CAS  Google Scholar 

  25. Ip, A. W. M., Barford, J. P., & McKay, G. A. (2010). Comparative study on the kinetics and mechanism of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chemical Engineering Journal, 157, 434–442.

    Article  CAS  Google Scholar 

  26. Ghasemi, Z., Seif, A., Ahmadi, T. S., Zargar, B., Rashidi, F., & Rouzbahani, G. M. (2012). Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution. Advanced Powder Technology, 23(2), 148–156.

    Article  CAS  Google Scholar 

  27. Dubinin, M. M., & Radushkevich, L. V. (1947). Equation of the characteristic curve of activated charcoal. Chem Zentr, 1, 875.

    Google Scholar 

  28. Ceyhan, Ö., & Baybaş, D. (2001). Adsorption of some textile dyes by hexadecyltrimethylammonium bentonite. Turkish Journal of Chemistry, 25, 193–200.

    CAS  Google Scholar 

  29. Polat, A., & Aslan, S. (2014). Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell. Journal of Environmental Engineering and Landscape Management, iFirst, 1–9.

  30. Shah, J., Jan, M. R., Haq, A., & Zeeshan, M. (2015). Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. Journal of Saudi Chemical Society, 19(3), 301–310.

    Article  Google Scholar 

  31. Arief, .VO., Trilestari, K., Sunarso, J., Indraswati, N., Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies: a review. CLEAN –Soil, Air, Water, 36, 937–962.

  32. Yazıcı, H. (2007). The investigation of the biosorption of Cr and Cu2+ ions from aqueous solutions by Marrubium globosum ssp. globosum plant: M. Sc. Thesis. Isparta: Süleyman Demirel University Graduate School of Applied and Natural Sciences Department of Environmental Engineering, 140 p.

  33. Majumdar, S. S., Das, S. K., Saha, T., Panda, G. C., Bandyopadhyoy, T., & Guha, A. K. (2008). Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids and Surfaces B: Biointerfaces, 63, 138–145.

    Article  CAS  Google Scholar 

  34. Yazıcı, H., Kılıç, M., & Solak, M. (2008). Biosorption of copper(II) by Marrubium Globosum subsp. globosum leaves powder: Effect of chemical pretreatment. Journal of Hazardous Materials, 151, 669–675.

    Article  Google Scholar 

  35. Kaewsarn, P. (2002). Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere, 47, 1081–1085.

    Article  CAS  Google Scholar 

  36. Luo, S. L., Yuan, L., Chai, L. Y., Min, X. B., Wang, Y. Y., Fang, Y., & Wang, P. (2006). Biosorption behaviors of Cu+2, Zn+2, Cd+2 and mixture by waste activated sludge. Transactions of the Nonferrous Metals Society of China, 16, 1431–1435.

    Article  CAS  Google Scholar 

  37. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 451–465.

  38. Martins, R. J., Pardo, R., & Boaventura, R. A. R. (2004). Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research, 38, 693–699.

    Article  CAS  Google Scholar 

  39. Cruz, C. V. C., Costa, A. C. A., Henriques, C. A., & Luna, A. S. (2004). Kinetic modelling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technology, 91, 249–257.

    Article  CAS  Google Scholar 

  40. Güler, U. A., Sarioglu, M. C. (2013). Mono and binary component biosorption of Cu(II), Ni(II), and methylene blue onto raw and pretreated S. cerevisiae: equilibrium and kinetics. Desalination and Water Treatment, 1–18.

  41. Doğan, M., & Alkan, M. (2003). Removal of methyl violet from aqueous solution by perlite. Journal of Colloid and Interface Sci., 267(1), 32–41.

    Article  Google Scholar 

  42. Temkin, M. J., & Phyzev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physiochim USSR, 12, 217–222.

    Google Scholar 

  43. Sawalha, M. F., Videa, J. R. P., Gon’zalez, J. R., & Gardea-Torresdey, J. L. (2006). Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. Journal of Colloid and Interface Science, 300, 100–104.

    Article  CAS  Google Scholar 

  44. Aksu, Z. (2002). Determination of the equilibrium, kinetic and thermodynamic parameters of the biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochemistry, 38, 89–99.

    Article  CAS  Google Scholar 

  45. Ho, Y. S. (2003). Removal of copper ions from aqueous solution by tree fern. Water Research, 37, 2323–2330.

    Article  CAS  Google Scholar 

  46. Padmavathy, V. (2008). Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresource Technology, 99, 3100–3109.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study and investigation has been endorsed by the Cumhuriyet University CÜBAP Chairmanship with project no. M 549. We sincerely thank CÜBAP Chairmanship for their endorsement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayiter Yıldız.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, S., Çekim, M. & Dere, T. Biosorption of Cu2+ and Ni2+ Ions from Synthetic Waters. Appl Biochem Biotechnol 183, 332–347 (2017). https://doi.org/10.1007/s12010-017-2448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2448-x

Keywords

Navigation