Skip to main content
Log in

Olive Oil Mill Wastewater to Volatile Fatty Acids: Statistical Study of the Acidogenic Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the present paper was to study the feasibility of using olive oil mill wastewater (OOW) to produce a mixture of volatile fatty acids (VFA) adequate for producing polyhydroxyalkanoates (PHA) with better mechanical properties in a later aerobic phase. Hence, this wastewater can be valorized rather than only treated, and its organic pollutant content can result in value-added products with a sustainable origin. The influences of alkalinity addition and initial substrate concentration on VFA formation were evaluated in anaerobic batch fermentation experiments of OOW. The highest acidification degree (DA) (60 %) was obtained with an intermediate alkalinity of 5 gCaCO3 L−1 and a high substrate concentration of 14 gCOD L−1. These operational conditions produced a mixture of VFA (7.4 gCOD L−1) composed predominantly by acetic, n-butyric, and n-caproic acids. Regarding VFA valorization into PHA, recovering an adequate VFA composition is crucial to produce biopolymers that are more attractive industrially. The most suitable VFA mixture for PHA production was obtained at the highest alkalinity addition (7 gCaCO3 L−1), with an odd-to-even VFA ratio ranging from 0.42 to 0.61 with increasing COD load, predominantly composed of odd-equivalent acids, mainly propionic acid, although resulting in a significant decrease of DA to values close to 20 %. These experimental results suggest that VFA produced in this process can be used as substrate in a subsequent process for PHA production, regulating its monomer composition and polymer properties, solely by a proper adjustment of the operational conditions of the acidogenic fermentation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

COD:

Chemical oxygen demand

DA:

Degree of acidification

HB:

Hydroxybutyrate

HV:

Hydroxyvalerate

HRT:

Hydraulic retention time

Odd-to-even:

Odd-to-even ratio of VFA

OOW:

Olive oil mill wastewater

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

P(HB-co-HV):

Poly-3-hydroxybutyrate-co-3-hydroxyvalerate

PLA:

Polylactic acid

TIC:

Total inorganic carbon

TN:

Total nitrogen

TOC:

Total organic carbon

TSS:

Total suspended solids

tVFA:

Total volatile fatty acid concentration

VFA:

Volatile fatty acids

VSS:

Volatile suspended solids

References

  • Albuquerque, M. G. E., Eiroa, M., Torres, C., Nunes, B. R., & Reis, M. A. M. (2007). Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology, 130(4), 411–421.

    Article  CAS  Google Scholar 

  • Alkaya, E., & Demirer, G. (2011). Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass and Bioenergy, 35(1), 32–39.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American Journal Public.

    Google Scholar 

  • Beccari, M., Bertin, L., Dionisi, D., Fava, F., Majore, M., Valentino, F., & Villano, M. (2005). Exploiting olive mil effluents as a renewable resource for production of biodagradable polymers through an anaerobic–aerobic process.4th European Bio Remediation Conference, 3-6 September 2008, Chania, Crete, Greece.

  • Ben, M., Mato, T., Lopez, A., Vila, M., Kennes, C., & Veiga, M. C. (2011). Bioplastic production using wood mill effluents as feedstock. Water Science and Technology, 63(6), 1196–1202.

    Article  CAS  Google Scholar 

  • Bengtsson, S., Hallquist, J., Werker, A., & Welander, T. (2008). Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on VFA production. Biochemical Engineering Journal, 40, 492–499.

    Article  CAS  Google Scholar 

  • Bertin, L., Lampis, S., Todaro, D., Scoma, A., Vallini, G., Marchetti, L., Majone, M., & Fava, F. (2010). Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon. Water Research, 44(15), 4537–4549.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Kaczala, F., Hogland, W., Marques, M., Christakis, A., Paraskeva, A., Vagelis, G., Papadakis, & Sillanpää, M. (2014). Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control: a review. Environmental Science and Pollution Research, 21, 268–298.

    Article  CAS  Google Scholar 

  • Castilho, L., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23), 5996–6009.

    Article  CAS  Google Scholar 

  • Cerrone, F., Sánchez-Peinado, M. M., Juárez-Jimenez, B., González-López, J., & Pozo, C. (2010). Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by azotobacter strains. Journal Microbiology and Biotechnology, 20(3), 594–601.

    CAS  Google Scholar 

  • Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., & McDonald, A. G. (2007). Synthesis of polyhydroxyalkanoates in municipal wastewater treatment. Water Environment Research, 79, 2396–2403.

    Article  CAS  Google Scholar 

  • Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85(4), 927–935.

    Article  CAS  Google Scholar 

  • Davila-Vazquez, G., Alatriste-Mondragón, F., de León-Rodríguez, A., & Razo-Flores, E. (2008). Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. International Journal of Hydrogen Energy, 33(19), 4989–4997.

    Article  CAS  Google Scholar 

  • Dionisi, D., Carucci, G., PetrangeliPapini, M., Riccardi, C., Majone, M., & Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39, 2076–2084.

    Article  CAS  Google Scholar 

  • Doi, Y., Kunioka, M., Nakamura, Y., & Soga, K. (1987). Biosynthesis of copolyesters in Alcaligeneseutrophus H16 from carbon-13 labeled acetate and propionate. Macromolecules, 20(12), 2988–2991.

    Article  CAS  Google Scholar 

  • Günay, A., Çetin, M. (2013). Determination of anaerobic biodegradation kinetics of olive oil mill wastewater. International Biodeterioration and Biodegradation, 85, 237–242.

  • Hashwa, F., & Mhanna, E. (2008). Aerobic and anaerobic biotreatment of olive oil mill wastewater. In Efficient management of wastewater (pp. 187-203). New York: Springer.

  • Jiang, Y., Marang, L., Tamis, J., van Loosdrecht, M. C. M., Dijkman, H., & Kleerebezem, R. (2012). Waste to resource: converting paper mill wastewater to bioplastic. Water Research, 46, 5517–5530.

    Article  CAS  Google Scholar 

  • Lee, W. S., Chua, A. S. M., Yeoh, H. K., & Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal, 235, 83–99.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Hall, P. V., Darby, J. L., Coats, E. R., Green, P. G., Thompson, D. E., & Loge, F. J. (2008). Production of polyhydroxyalkanoate during treatment of tomato cannery wastewater. Water Environment Research, 80(4), 367–372.

    Article  CAS  Google Scholar 

  • Malina, J. F., & Pohland, G. F. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes. Water Quality Management Library.

  • Matthies, C., & Schink, B. (1992). Reciprocal isomerization of butyrate and isobutyrate by the strictly anaerobic bacterium strain WoG13 and methanogenic isobutyrate degradation by a defined triculture. Applied and Environmental Microbiology, 58(5), 1435–1439.

    CAS  Google Scholar 

  • Min, K. S., Khan, A. R., Kwon, M. K., Jung, Y. J., Yun, Z., & Kiso, Y. (2005). Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of VFAs. Journal of Chemical Technology and Biotechnology, 80, 909–915.

    Article  CAS  Google Scholar 

  • Moita, R., & Lemos, P. C. (2012). Biopolymers production from mixed cultures and pyrolysis by-products. Journal of Biotechnology, 157(4), 578–583.

    Article  CAS  Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. (2009). Response surface methodology: process and product optimization using designed experiments. Series in probability and statistics (p. 704). New York: Wiley.

    Google Scholar 

  • Niaounakis, M. (2014). Biopolymers: products, processing, and applications, 1st edition. Waltham, MA: Elsevier.

  • Oktem, Y. A., Ince, O., Donnelly, T., Sallis, P., & Ince, B. K. (2006). Determination of optimum operating conditions of an acidification reactor treating a chemical synthesis-based pharmaceutical wastewater. Process Biochemical, 41(11), 2258–2263.

    Article  CAS  Google Scholar 

  • Otles, S., & Selek, I. (2012). Treatment of olive mill wastewater and the use of polyphenols obtained after treatment. International Journal of Food Studies, 1, 85–100.

    Article  Google Scholar 

  • Panchal, B., Bagdadi, A., & Roy, I. (2013). Polyhydroxyalkanoates: the natural polymers produced by bacterial fermentation. In Advances in natural polymers (pp. 397–421). Berlin: Springer.

  • Pardelha, F., Albuquerque, M. G. E., Reis, M. A. M., Dias, H. M. L., & Oliveira, R. (2012). Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty. Journal of Biotechnology, 162, 336–345.

    Article  CAS  Google Scholar 

  • Pelillo, M., Rincón, B., Raposo, F., Martin, A., & Borja, R. (2006). Mathematical modelling of the aerobic degradation of two-phase olive mil effluent in a batch reactor. Biochemical Engineering Journal, 30, 308–315.

    Article  CAS  Google Scholar 

  • Reddy, C. S. K., Ghai, R., Rashmi, & Kalia, V. C. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87, 137–146.

    Article  CAS  Google Scholar 

  • Serafim, L. S., Lemos, P. C., Albuquerque, M. G. E., & Reis, M. A. M. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Applied Microbiology and Biotechnology, 81(4), 615–628.

    Article  CAS  Google Scholar 

  • Silva, F. C., Serafim, L. S., Nadais, H., Arroja, L., & Capela, I. (2013). Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids. Chemical and Biochemical Engineering Quarterly, 27(4), 467–476.

    CAS  Google Scholar 

  • van Lier, B., Rebac, S., Lens, P., van Bijnen, F., Elferink, S., Stams, M., & e Lettinga, G. (1997). Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8 degrees C. Water Science and Technology, 36(6–7), 317–324.

    Google Scholar 

  • Wang, Q. H., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy, 16(6), 407–416.

    Article  CAS  Google Scholar 

  • Yu, H. Q., Fang, H. H. P., & Gu, G. W. (2002). Comparative performance of mesophilic and thermophilic acidogenic upflow reactors. Process Biochemistry, 38(3), 447–454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the project PTDC/AMB-AAC/111316/2009 from Fundação para a Ciência e a Tecnologia. F.C. Silva acknowledges his Ph.D. grant (SFRH/BD/46845/2008) from Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Gameiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gameiro, T., Sousa, F., Silva, F.C. et al. Olive Oil Mill Wastewater to Volatile Fatty Acids: Statistical Study of the Acidogenic Process. Water Air Soil Pollut 226, 115 (2015). https://doi.org/10.1007/s11270-015-2311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2311-z

Keywords

Navigation