Skip to main content
Log in

Phytostabilization and Physicochemical Responses of Korean Ecotype Solanum nigrum L. to Cadmium Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Plants of the black nightshade (Solanum nigrum L.) Korean ecotype were exposed to a gradient of cadmium (Cd) concentrations (0, 10, 30, 50, and 80 mg kg−1 of dry sand). The results showed a significant (p < 0.05) reduction in biomass, root-shoot length, and chlorophyll contents in the plants exposed to Cd compared to the control. Cd concentrations significantly increased in different parts of the plants as indicated by inductively coupled plasma mass spectrometry (ICP-MS) analysis. The amount of Cd accumulated by the plants in the leaves, stems, and roots was 307, 1536, and 3163 mg kg−1 of dry matter, respectively, when treated with Cd 80 mg kg−1. The translocation factor (TF) declined with higher Cd concentrations, whereas the bioconcentration factor (BCF) increased with elevated Cd levels. The response to oxidative stress induced by Cd was modulated by the enzymatic activity of peroxidase and polyphenol peroxidase. In terms of non-enzymatic antioxidant biochemicals such as reduced glutathione and polyphenols, its contents in the leaves significantly increased in a dose-dependent manner. The overall increased antioxidant defense response in leaves might have contributed to the higher accumulation and tolerance of plants against Cd-induced oxidative stress. The Korean ecotype of S. nigrum has potential phytoremediation utility for phytostabilization of Cd-contaminated marginal land. However, further genomic insights could contribute to the identification of potential Cd translocation genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals (pp. 625–676). New York: Springer.

    Book  Google Scholar 

  • Bahadir, T., Bakan, G., Altas, L., & Buyukgungor, H. (2007). The investigation of lead removal by biosorption: an application at storage battery industry wastewaters. Enzyme and Microbial Technology, 41(1–2), 98–102.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 127(1), 61–68.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • Buendia-Gonzalez, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Diaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101(15), 5862–5867.

  • Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., et al. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 99(15), 7034–7040.

    Article  CAS  Google Scholar 

  • Chen, L., Luo, S., Xiao, X., Guo, H., Chen, J., Wan, Y., et al. (2010). Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology, 46(3), 383–389.

    Article  Google Scholar 

  • Dahmani-Muller, H., Van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109(2), 231–238.

    Article  CAS  Google Scholar 

  • Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Current Microbiology, 54(1), 74–78.

    Article  CAS  Google Scholar 

  • Ekmekçi, Y., Tanyolaç, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611.

    Article  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    Article  CAS  Google Scholar 

  • Fidalgo, F., Freitas, R., Ferreira, R., Pessoa, A. M., & Teixeira, J. (2011). Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environmental and Experimental Botany, 72(2), 8–8.

    Article  Google Scholar 

  • Gao, Y., Zhou, P., Mao, L., Shi, W. J., & Zhi, Y. E. (2010). Phytoextraction of cadmium and physiological changes in Solanum nigrum as a novel cadmium hyperaccumulator. Russian Journal of Plant Physiology, 57(4), 501–508.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229–236.

    Article  CAS  Google Scholar 

  • Im, Y. J., Ji, M., Lee, A., Killens, R., Grunden, A. M., & Boss, W. F. (2009). Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiology, 151(2), 893–904.

    Article  CAS  Google Scholar 

  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Review, 75(4), 339–364.

    Article  Google Scholar 

  • Jakab, G., Ton, J., Flors, V., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiology, 139(1), 267–274.

    Article  CAS  Google Scholar 

  • John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant, Soil and Environment, 54 (6), 262.

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315–319.

    Article  CAS  Google Scholar 

  • Khan, A. L., Waqas, M., Hamayun, M., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2013). Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiology, 13(1), 51.

    Article  CAS  Google Scholar 

  • Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M. S., & Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. Journal of Agriculture and Food Chemistry, 50(2), 373–377.

    Article  CAS  Google Scholar 

  • Kurzbaum, E., Kirzhner, F., & Armon, R. (2013). A hydroponic system for growing gnotobiotic vs sterile plants to study phytoremediation processes. International Journal of Phytoremediation, 16(3), 267–274.

    Article  Google Scholar 

  • Liu, Y. W., Gao, J. L., Guan, J., Qian, Z. M., Feng, K., & Li, S. P. (2009). Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. Journal of Agriculture and Food Chemistry, 57(8), 3087–3093.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, H., Zhang, Y., & Chai, T. (2013). Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiology and Biochemistry, 68, 1–7.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299(2), 537–546.

    Article  CAS  Google Scholar 

  • Martin, S. R., Llugany, M., Barceló, J., & Poschenrieder, C. (2012). Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes. Biologia Plantarum, 56(4), 729–734.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Hernández, T., Pérez, A., & Garcı́a, C. (2002). Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Applied Soil Ecology, 21(2), 149–158.

    Article  Google Scholar 

  • Pérez-Marín, A. B., Ballester, A., González, F., Blázquez, M. L., Muñoz, J. A., Sáez, J., et al. (2008). Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method. Bioresource Technology, 99(17), 8101–8106.

    Article  Google Scholar 

  • Rivetta, A., Negrini, N., & Cocucci, M. (1997). Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant, Cell & Environment, 20(5), 600–608.

    Article  CAS  Google Scholar 

  • Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero‐Puertas, M. C., & Del Río, L. A. (2001). Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115–2126.

    CAS  Google Scholar 

  • Sanità di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41(2), 105–130.

    Article  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43–50.

    Article  CAS  Google Scholar 

  • Somashekaraiah, B. V., Padmaja, K., & Prasad, A. R. K. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum, 85(1), 85–89.

    Article  CAS  Google Scholar 

  • Sun, R.-L., Zhou, Q.-X., Sun, F.-H., & Jin, C.-X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany, 60(3), 468–476.

    Article  CAS  Google Scholar 

  • Sun, X., Zhang, J., Zhang, H., Zhang, Q., Ni, Y., Chen, J., et al. (2009). Glucosinolate profiles of Arabidopsis thaliana in response to cadmium exposure. Water, Air, and Soil Pollution, 200(1–4), 109–117.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2010). Plant physiology. Sunderland: Sinauer Associates Publishers, Inc.

    Google Scholar 

  • Teixeira, J., Sousa, A. D., Azenha, M., Moreira, J. T., Fidalgo, F., Fernando Silva, A., et al. (2011). Solanum nigrum L. weed plants as a remediation tool for metalaxyl-polluted effluents and soils. Chemosphere, 85(5), 744–750.

    Article  CAS  Google Scholar 

  • Wan, Y., Luo, S., Chen, J., Xiao, X., Chen, L., Zeng, G., et al. (2012). Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere, 89(6), 743–750.

    Article  CAS  Google Scholar 

  • Wang, L., Cao, J., Chen, D., Liu, X., Lu, H., & Liu, Z. (2009). Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biological Trace Element Research, 127(1), 53–68.

    Article  CAS  Google Scholar 

  • Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of weed species applied to remediation of soils contaminated with heavy metals. Journal of Environmental Sciences (China), 16(5), 868–873.

    Google Scholar 

  • Wei, S., Zhou, Q., Wang, X., Zhang, K., Guo, G., & Ma, L. (2005a). A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Science Bulletin, 50(1), 33–38.

    Article  CAS  Google Scholar 

  • Wei, S. H., Zhou, Q. X., & Wang, X. (2005b). Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics. Huan Jing Ke Xue, 26(3), 167–171.

    CAS  Google Scholar 

  • Wei, S., Hu, Y., Srivastava, M., Zhou, Q., Niu, R., Li, Y., et al. (2009). Seed germination of a newly discovered hyperaccumulator Solanum nigrum L. affected by illumination and seed-soaking reagent. Journal of Hazardous Materials, 170(2–3), 1256–1259.

    Article  CAS  Google Scholar 

  • Wei, S., Clark, G., Doronila, A. I., Jin, J., & Monsant, A. C. (2013). Cd hyperaccumulative characteristics of Australia ecotype Solanum nigrum L. and its implication in screening hyperaccumulator. International Journal of Phytoremediation, 15(3), 199–205.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80(3), 623–633.

    Article  CAS  Google Scholar 

  • Xu, P., & Wang, Z. (2014). A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water, Air, & Soil Pollution, 225(5), 1–9.

    Article  Google Scholar 

  • Zacchini, M., Pietrini, F., Scarascia Mugnozza, G., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1–4), 23–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Korea Ministry of Environment as the Eco-Innovation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Ullah, I., Khan, A.L. et al. Phytostabilization and Physicochemical Responses of Korean Ecotype Solanum nigrum L. to Cadmium Contamination. Water Air Soil Pollut 225, 2147 (2014). https://doi.org/10.1007/s11270-014-2147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2147-y

Keywords

Navigation