Skip to main content
Log in

A Comparison Study in Cadmium Tolerance and Accumulation in Two Cool-Season Turfgrasses and Solanum nigrum L

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and black nightshade (Solanum nigrum L.) were exposed to cadmium (40, 80 mg Cd kg−1) for 9 weeks to compare their cadmium tolerance and accumulation. Results showed that the cadmium inhibited the growth of all plants. The shoot and root biomass of black nightshade was significantly declined under 40 mg Cd kg−1, while Kentucky bluegrass and tall fescue were tolerant to 40 mg Cd kg−1 without significant decline of the plant biomass. The total Cd accumulation in Kentucky bluegrass, tall fescue, and black nightshade was 418.6, 383.4, and 9.4 mg m−2 under 40 mg Cd kg−1, and 1114.9, 761.5, and 63.7 mg m−2 under 80 mg Cd kg−1, respectively. Under 40- and 80-mg Cd kg−1 treatments, the phytoextraction rate was 2.10 and 4.64 % in Kentucky bluegrass, 0.71 and 1.40 % in tall fescue, and only 0.12 and 0.43 % in black nightshade, respectively. Kentucky bluegrass and tall fescue showed better Cd tolerance and higher Cd accumulation than black nightshade, indicating that Kentucky bluegrass and tall fescue have potential phytostabilization capability in cadmium-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of The Total Environment, 406, 43–56.

    Article  CAS  Google Scholar 

  • Arduini, I., Godbold, D. L., & Onnis, A. (1994). Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum, 92, 675–680.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Blaylock, M. J., David, E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.

    Article  CAS  Google Scholar 

  • Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101, 5862–5867.

    Article  Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565.

    Article  CAS  Google Scholar 

  • Dary, M., Chamber-Pérez, M. A., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177, 323–330.

    Article  CAS  Google Scholar 

  • Dong, W. Q. Y., Cui, Y., & Liu, X. (2001). Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination, 10, 497–510.

    Article  Google Scholar 

  • Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: current views on an emerging green technology. Journal of Soil Contamination, 7, 415–432.

    Article  Google Scholar 

  • Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92, 19–25.

    Article  Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., & Garbisu, C. (2008). Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 152, 32–40.

    Article  Google Scholar 

  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. The Botanical Review, 75, 339–364.

    Article  Google Scholar 

  • Komarnicki, G. J. K. (2005). Lead and cadmium in indoor air and the urban environment. Environmental Pollution, 136, 47–61.

    Article  CAS  Google Scholar 

  • Liu, W., Shu, W. S., & Lan, C. Y. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49, 29–32.

    Article  CAS  Google Scholar 

  • Liu, X. Q., Peng, K. J., Wang, A. G., Lian, C. L., & Shen, Z. G. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78, 1136–1141.

    Article  CAS  Google Scholar 

  • Liu, Y. M., Wang, K., Xu, P. X., & Wang, Z. L. (2012). Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides. International Journal of Phytoremediation, 14, 467–480.

    Article  CAS  Google Scholar 

  • Long, X. X., Wang, Y. H., & Liu, H. Y. (2008). Growth response and uptake differences between two ecotypes of sedum alfredii to soils Cd. Journal of Plant Ecology, 32, 168–175.

    Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Nie, F. H. (2006). Cd hyperaccumulator Phytolacca acinosa Roxb and Cd accumulative characteristics. Ecology and Environment, 15, 303–306.

    Google Scholar 

  • Rebele, F., & Lehmann, C. (2011). Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris). Water, Air, & Soil Pollution, 216, 93–103.

    Article  CAS  Google Scholar 

  • Sabreen, S., & Sugiyama, S. (2008). Trade-off between cadmium tolerance and relative growth rate in 10 grass species. Environmental and Experimental Botany, 63, 327–332.

    Article  CAS  Google Scholar 

  • Shi, G. R., & Cai, Q. S. (2009). Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances, 27, 555–561.

    Article  CAS  Google Scholar 

  • Singh, O., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. (2003). Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.

    Article  CAS  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., & Diao, C. Y. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99, 1103–1110.

    Article  CAS  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., Wang, L., & Liu, W. T. (2009). Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 161, 808–814.

    Article  CAS  Google Scholar 

  • Verkleij, J. A. C., Golan-Goldhirsh, A., Antosiewisz, D. M., Schwitzguébel, J. P., & Schröder, P. (2009). Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environmental and Experimental Botany, 67, 10–22.

    Article  CAS  Google Scholar 

  • Wang, M. J., & Wang, W. X. (2009). Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Aquatic Toxicology, 95, 99–107.

    Article  CAS  Google Scholar 

  • Wei, S. H., Zhou, Q. X., & Mathews, S. (2008). A newly found cadmium accumulator—Taraxacum mongolicum. Journal of Hazardous Materials, 159, 544–547.

    Article  CAS  Google Scholar 

  • Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of weed species applied to remediation of soils contaminated with heavy metals. Journal of Environmental Sciences (China), 16, 868–873.

    Google Scholar 

  • Wei, S. H., Zhou, Q. X., Wang, X., Zhang, K. S., Guo, G. L., & Ma, L. Q. (2005). A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Science Bulletin, 50, 33–38.

    Article  CAS  Google Scholar 

  • Wei, S. H., Niu, R. C., Srivastava, M., Zhou, Q. X., Wu, Z. J., Sun, T. H., Hu, Y. H., & Li, Y. M. (2009). Bidens tripartite L.: a Cd-accumulator confirmed by pot culture and site sampling experiment. Journal of Hazardous Materials, 170, 1269–1272.

    Article  CAS  Google Scholar 

  • Wong, M. H., & Bradshaw, A. D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytologist, 91, 255–261.

    Article  CAS  Google Scholar 

  • Yang, X., Long, X., Ye, H., He, Z., Calvert, D., & Stoffella, P. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259, 181–189.

    Article  CAS  Google Scholar 

  • Zhang, S. R., Chen, M. Y., Li, T., Xu, X. X., & Deng, L. J. (2010a). A newly found cadmium accumulator—Malva sinensis Cavan. Journal of Hazardous Materials, 173, 705–709.

    Article  CAS  Google Scholar 

  • Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2010b). Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technology, 101, 2063–2066.

    Article  CAS  Google Scholar 

  • Zhao, F., Lombi, E., & McGrath, S. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    Article  CAS  Google Scholar 

  • Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution, 184, 235–242.

    Article  CAS  Google Scholar 

  • Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil, 276, 153–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the program for New Century Excellent Talents in University from the Ministry of Education of China (grant no. NCET-04-0399) and National Agriculture Science and Technology Achievement Transformation Funds (grant no. 2011GB23600007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Wang, Z. A Comparison Study in Cadmium Tolerance and Accumulation in Two Cool-Season Turfgrasses and Solanum nigrum L. Water Air Soil Pollut 225, 1938 (2014). https://doi.org/10.1007/s11270-014-1938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1938-5

Keywords

Navigation