Skip to main content
Log in

Potential Use of Newly Isolated Bacterial Strain Ochrobactrum anthropi in Bioremediation of Polychlorinated Biphenyls

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The degradation ability of newly isolated bacterial strain Ochrobactrum anthropi toward polychlorinated biphenyls (PCBs) was examined under aerobic conditions. The strain was isolated from historically PCB-contaminated sediments from Strážsky canal in eastern Slovakia, surrounding of the former PCB producer. The degradation ability of the strain was enhanced by addition of other substrates and degradation inducers—biphenyl, glucose, both biphenyl and glucose, ivy leaves, and pine needles. The adaptation of cells membrane toward PCBs in the presence of abovementioned substrates was evaluated with the changes in fatty acid composition (membrane saturation, cistrans isomerization, and changes in branched fatty acids synthesis). The highest induction of PCB degradation and lowest cell adaptation in liquid medium was achieved using ivy leaves. On the other hand, lowest degradation was achieved when PCBs were added alone. Similar low degradation was observed in the presence of glucose addition together with biphenyl. Contrary, highest growth stimulation under the applied condition was observed. Obtained results indicated that addition of glucose together with biphenyl induced PCB degradation via bacterial growth stimulation, not via the induction of activity of degradation enzymes. Cut ivy leaves (containing terpenoic compounds serving as degradation inducer and structural analog of biphenyl) increased PCB removal from contaminated sediment by O. anthropi. Results indicate the degradation ability of O. anthropi toward penta-, hexa-, and hepta-chlorinated PCB congeners. The degradation of congeners with more than five chlorine atoms per molecule was detected in higher extent compared to dichlorinated congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review. Critical Review of Biotechnology, 10, 241–251.

    Article  CAS  Google Scholar 

  • Berta, F., Spuka, J., & Chladna, A. (1997). The composition of terpenes in needles of Pinus sylvestris in a relatively clear and in a city environment. Biologia, 52, 71–78.

    CAS  Google Scholar 

  • Billingsley, K. A., Backus, S. M., Juneson, C., & Ward, O. P. (1997). Comparison of the degradation patterns of polychlorinated biphenyl congeners in Aroclors by Pseudomonas strain LB400 after growth on various carbon sources. Canadian Journal of Microbiology, 43, 1172–1179.

    Article  CAS  Google Scholar 

  • Brázová, T., Hanzelová, V., & Miklisová, D. (2012). Bioaccumulation of six PCB indicator congeners in a heavily polluted water reservoir in Eastern Slovakia: Tissue-specific distribution in fish and their parasites. Parasitology Research, 111, 779–786.

    Article  Google Scholar 

  • Commandeur, L. C. M., Van Eyseren, H. E., Opmeer, M. R., Govers, H. A., & Parsons, J. R. (1995). Biodegradation kinetics of highly chlorinated biphenyls by Alcaligenes sp. JB1 in an aerobic continuous culture system. Environmental Science and Technology, 29, 3038–3043.

    Article  CAS  Google Scholar 

  • Dercová, K., Čičmanová, J., Lovecká, P., Demnerová, K., Macková, M., Hucko, P., et al. (2008). Isolation and identification of PCB degrading microorganisms from contaminated sediments. International Biodeterioration and Biodegradation, 62, 219–225.

    Article  Google Scholar 

  • Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2014). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54, 253–260.

    Article  Google Scholar 

  • Dudková, V., Demnerová, K., & Bedard, D. L. (2012). Sediment-free anaerobic microbial enrichments with novel dechlorinating activity against highly chlorinated commercial PCBs. Journal of Chemical Technology and Biotechnology, 87, 1254–1262.

    Article  Google Scholar 

  • Dzantor, E., Woolston, J., & Momen, B. (2002). PCB dissipation and microbial community analysis in rhizosphere soil under substrate amendment conditions. International Journal of Phytoremediation, 4, 283–295.

    Article  CAS  Google Scholar 

  • Egorova, D. O., Demakov, V. A., & Plotnikova, E. G. (2013). Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains. Journal of Hazardous Materials, 261, 378–386.

    Article  CAS  Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 155, 1–12.

    Article  CAS  Google Scholar 

  • Furukawa, K., & Fujihara, H. (2008). Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. Journal of Bioscience and Bioengineering, 105(5), 433–449.

    Article  CAS  Google Scholar 

  • Gilbert, E. S., & Crowley, D. E. (1997). Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Applied Microbiology and Biotechnology, 63, 1933–1938.

    CAS  Google Scholar 

  • Hallgren, P., Westbom, R., Nilsson, T., Sporring, S., & Björklund, E. (2006). Measuring bioavailability of polychlorinated biphenyls in soil to earthworms using selective supercritical fluid extraction. Chemosphere, 63(9), 1532–1538.

    Article  CAS  Google Scholar 

  • Heipieper, H. J., Neumann, G., Kabelitz, N., Kastner, M., & Richnow, H. H. (2004). Carbon isotope fractionation during cistrans isomerization of unsaturated fatty acids in Pseudomonas putida. Applied Microbiology and Biotechnology, 66, 285–290.

    Article  CAS  Google Scholar 

  • Hernandez, B. S., Koh, S. C., Chial, M., & Focht, D. D. (1997). Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation, 8, 153–158.

    Article  CAS  Google Scholar 

  • Hickey, W. J. (1999). Transformation and fate of polychlorinated biphenyls in soil and sediment. In D. C. Adriano, J. M. Bollag, W. T. Frankenberger, & R. C. Sims (Eds.), Bioremediation of contaminated soil (pp. 315–338). USA: Soil Science Society of America Inc.

    Google Scholar 

  • Hiller, E., Zemanová, L., Sirotiak, M., & Jurkovič, Ľ. (2010). Concentration, distributions, and sources of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in bed sediments of the water reservoirs in Slovakia. Environmental Monitoring and Assessment, 173, 883–897.

    Article  Google Scholar 

  • Kim, S., & Picardal, F. W. (2000). A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates. FEMS Microbiology Letters, 185, 225–229.

    Article  CAS  Google Scholar 

  • Kim, S., & Picardal, F. W. (2001). Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source. Applied and Environmental Microbiology, 67, 1953–1955.

    Article  CAS  Google Scholar 

  • Komancová, M., Jurčová, I., Kochánková, L., & Burkhard, J. (2003). Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere, 50, 537–543.

    Article  Google Scholar 

  • Kwon, S. H., Hong, M. H., Choi, J. H., Whang, K. S., Lee, H. S., So, J. S., et al. (2009). Bioremediation of Aroclor 1242 by a consortium culture in marine sediment microcosm. Biotechnology Bioprocess Engineering, 13, 730–737.

    Article  Google Scholar 

  • Langer, P., Kočan, A., Tajtáková, M., Drobná, B., Chovancová, J., Rádiková, Ž., et al. (2012). Environmental contamination with endocrine and metabolic disruptors and their impact on health of Slovakian resident. Monitor Medicine SLS, 3–4, 5–12.

    Google Scholar 

  • Larsen, B., Bǿwadt, S., & Facchetti, S. (1993). Separation of toxic congeners from PCB mixtures of two series coupled narrow bore columns (50 m SIL-8 and 25 m HT-5). In J. Albaigés (Ed.), Environmental chemistry of PCBs (pp. 33–38). USA: Gordon &Breach Sci Publ Langhorne.

    Google Scholar 

  • Liz, J. A. Z., Jan-Roblero, J., de la Serna, J. Z., de León, A. V., & Hernández-Rodríguez, C. (2009). Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World Journal of Microbiology and Biotechnology, 25, 165–170.

    Article  CAS  Google Scholar 

  • Luo, W., Dángelo, E. M., & Coyne, M. S. (2008). Plant secondary metabolites, biphenyl, and hydroxypropyl-β-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soil. Soil Biology and Biochemistry, 39, 735–743.

    Article  Google Scholar 

  • Luo, W., D’Angelo, E. M., & Coyne, M. S. (2007). Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere, 70, 364–373.

    Article  Google Scholar 

  • Mondello, F. J., Turcich, M. P., Lobos, J. H., & Erickson, B. D. (1997). Identification and modification of biphenyl dioxygenase sequences that determine the specificity of PCB degradation. Applied and Environmental Microbiology, 63, 3096–3103.

    CAS  Google Scholar 

  • Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiology Research, 165(5), 363–375.

    Article  CAS  Google Scholar 

  • Mrozik, A., Łabużek, S., & Piotrowska-Seget, Z. (2005). Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiology Research, 160, 149–157.

    Article  CAS  Google Scholar 

  • Natarajan, M. R., Wu, W.-M., Wang, H., Bhatnagar, L., & Jain, M. K. (1998). Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Water Research, 32(10), 3013–3020.

    Article  CAS  Google Scholar 

  • Parnell, J. J., Denef, V. J., Park, J., Tsoi, T., & Tiedje, J. M. (2010). Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation, 21, 147–156.

    Article  CAS  Google Scholar 

  • Potrawfke, T., Timmis, K. N., & Wittich, R.-M. (1998). Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Applied and Environmental Microbiology, 64, 3798–3806.

    CAS  Google Scholar 

  • Seeger, M., Timmis, K. N., & Hofer, B. (1995). Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Applied and Environmental Microbiology, 61(7), 2654–2658.

    CAS  Google Scholar 

  • Sierra, I., Valera, J. L., Marina, M. L., & Laborda, F. (2003). Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere, 53, 609–618.

    Article  CAS  Google Scholar 

  • Singer, A. C., Gilbert, E. S., Luepromchai, E., & Crowley, D. E. (2000). Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Applied Microbiology and Biotechnology, 54, 838–843.

    Article  CAS  Google Scholar 

  • Sondossi, M., Sylvestre, M., & Ahmad, D. (1992). Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Applied and Environmental Microbiology, 58, 485–495.

    CAS  Google Scholar 

  • Sylvestre, M. (1995). Biphenyl/chlorobiphenyls catabolic pathway of Comamonas testosterone B-356: prospect for use in bioremediation. International Biodeterioration Biodegradation, 53, 189–211.

    Article  Google Scholar 

  • Tandlich, R., Vrana, B., Payne, S., Dercová, K., & Balaz, S. (2011). Biodegradation mechanism of biphenyl by a strain of Pseudomonas stutzeri. Journal of Environmental Science and Health A, 46(4), 1–8.

    Article  Google Scholar 

  • Tortella, G. R., Rubilar, O., Cea, M., Briceno, G., Quiroz, A., Diez, M. C., et al. (2013). Natural wastes rich in terpenes and their relevance in the matrix of an on-farm biopurification system for the biodegradation of atrazine. International Biodeterioration and Biodegradation, 85, 8–15.

    Article  CAS  Google Scholar 

  • Tříska, J., Kuncová, G., Macková, M., Nováková, H., Paasivirta, J., Lahtiperä, M., et al. (2004). Isolation and identification of intermediates from biodegradation of low chlorinated biphenyls (DELOR-103). Chemosphere, 54, 725–733.

    Article  Google Scholar 

  • Walia, S., Khan, A., & Rosenthal, N. (1990). Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Applied and Environmental Microbiology, 56, 254–261.

    CAS  Google Scholar 

  • Weber, F. J., & de Bont, J. A. M. (1996). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochemica et Biophysica Acta, 1286, 225–245.

    Article  CAS  Google Scholar 

  • Wichtl, M. (2004). Herbal drugs and phytopharmaceuticals (3rd ed., pp. 274–278). Germany: Medpharm GmbH Scientific Publishers.

    Google Scholar 

  • Zorádová-Murínová, S., Dudášová, H., Lukáčová, L., Čertík, M., Šilharová, K., Vrana, B., et al. (2012). Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers. Applied Microbiology and Biotechnology, 94, 1375–1385.

    Article  Google Scholar 

Download references

Acknowledgment

The financial support from Slovak Grant Agency (grant No. 1/0734/12) and grant APVV-0656-12 from Ministry of Education, Science, and Sports are gratefully acknowledged. Authors are thankful to Branislav Vrana, PhD., from the National Reference Laboratory in Water Research Institute Bratislava for the critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavomíra Murínová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murínová, S., Dercová, K. Potential Use of Newly Isolated Bacterial Strain Ochrobactrum anthropi in Bioremediation of Polychlorinated Biphenyls. Water Air Soil Pollut 225, 1980 (2014). https://doi.org/10.1007/s11270-014-1980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1980-3

Keywords

Navigation