Skip to main content
Log in

Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An indigenous polychlorinated biphenyl (PCB)-degrading bacterial consortium was obtained from soils contaminated by transformer oil with a high content of PCBs. The PCB degrader strains were isolated and identified as Brevibacterium antarcticum, Pandoraea pnomenusa, and Ochrobactrum intermedium by 16S rRNA gene sequence phylogenetic analysis. The PCB-degrading ability of the consortium and of individual strains was determined by using GC/MS. The PCB-degrading capacities of the consortium were evaluated for three concentrations of transfomer oil ranging from 55 to 152 μM supplemented with 0.001% biphenyl and 0.1% of Tween 80 surfactant. PCB biodegradation by the consortium was favored in the presence of both additives and the greatest extent of biodegradation (67.5%) was obtained at a PCB concentration of 55 μM. Each bacterial species exhibited a particular pattern of degradation relating to specific PCB congeners. Isolated strains showed a moderate degradation capability towards tetra-, hepta-, and octa-chlorobiphenyls; although no effect on penta-, hexa-, and nona-chlorobiphenyls was observed. Recently, PCB degradation capacity was recognized in a Pandorea member; however, this is the first study that describes the ability of Brevibacterium and Ochrobactrum species to degrade PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alford-Stevens A, Bellar TA, Eichelberger JW, Budde WL (1985) Method 680: Determination of pesticides and PCBs in water and soil/sediment by gas chromatography/mass spectrometry. US EPA Office of Research and Development, Cincinnati, Ohio

    Google Scholar 

  • Arensdorf JJ, Focht DD (1994) Formation of chlorocatechol meta cleavage products by a Pseudomonas during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60:2884–2889

    CAS  Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiment for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025

    CAS  Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl M, Johnson C (1986) Rapid assay for screening and characterizing microoorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51:761–768

    CAS  Google Scholar 

  • Borlakoglu JT, Haegeles KD (1991) Comparative aspects in the bioaccumulation, metabolism and toxicity with PCBs. Comp Biochem Physiol C 100:327–338. doi:10.1016/0742-8413(91)90004-D

    Article  CAS  Google Scholar 

  • Chang BV, Chiang BW, Yuan SY (2007) Biodegradation of nonylphenol in soil. Chemosphere 66:1857–1862. doi:10.1016/j.chemosphere.2006.08.029

    Article  CAS  Google Scholar 

  • Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil to PCR. Soil Biol Biochem 30:983–993. doi:10.1016/S0038-0717(98)00001-7

    Article  CAS  Google Scholar 

  • El-Sayed WS, Ibrahim MK, Abu-Shady M, El-Beih F, Ohmura N, Saiki H, Ando A (2003) Isolation and identification of a novel strain of the genus Ochrobactrum with phenol-degrading activity. J Biosci Bioeng 96:310–312

    CAS  Google Scholar 

  • Engesser KH, Strubel V, Christoglou K, Fischer P, Rast HG (1989) Dioxygenolytic cleavage of aryl ether bonds:1, 10-dihydro-1, 10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett 65:205–209. doi:10.1111/j.1574-6968.1989.tb03623.x

    Article  CAS  Google Scholar 

  • Finette BA, Subramanian V, Gibson DT (1984) Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol 160:1003–1009

    CAS  Google Scholar 

  • Furukawa K, Tonomura K, Kamibayashi A (1978) A effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl Environ Microbiol 35:223–227

    CAS  Google Scholar 

  • Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD (2007) Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol 189:5705–5715. doi:10.1128/JB.01476-06

    Article  CAS  Google Scholar 

  • Haluka L, Barancikova G, Balaz S, Dercova K, Vrana B, Paz-Weisshaar M, Furciova E, Bielek P (1995) Degradation of PCB in different soils by inoculated Alcaligenes xylosoxidans. Sci Total Environ 175:275–285. doi:10.1016/0048-9697(95)04927-4

    Article  Google Scholar 

  • Hou L, Dutta SK (2000) Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses. Lett Appl Microbiol 30:238–243. doi:10.1046/j.1472-765x.2000.00709.x

    Article  CAS  Google Scholar 

  • Iwaki H, Shimizu M, Tokuyama T, Hasegawa Y (1999) Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A. Appl Environ Microbiol 65:2232–2234

    CAS  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015. doi:10.1139/W06-062

    Article  CAS  Google Scholar 

  • Jan-Roblero J, Posadas A, de la Serna JZ, García R, Hernández-Rodríguez C (2008) Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico. World J Microbiol Biotechnol 24:1775–1784. doi:10.1007/s11274-008-9674-x

    Article  Google Scholar 

  • Knaebel DB, Crawford RL (1995) Extraction and purification of microbial DNA from petroleum contaminated soils and detection of low number of toluene, octane and pesticide degraders by multiple polymerase chain reaction and Southern analysis. Mol Ecol 4:579–591. doi:10.1111/j.1365-294X.1995.tb00258.x

    Article  CAS  Google Scholar 

  • Kohler HP, Kohler-Staub D, Focht DD (1988) Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacteria cells. Appl Environ Microbiol 54:1940–1945

    CAS  Google Scholar 

  • Lindner AS, Whitfield C, Chen N, Semrau JD, Adriaens P (2003) Quantitative structure-biodegradation relationships for ortho-substituted biphenyl compounds oxidized by Methylosinus trichosporium OB3b. Environ Toxicol Chem 22:2251–2257. doi:10.1897/02-387

    Article  CAS  Google Scholar 

  • Müller RH, Jorks S, Kleinsteuber S, Babel W (1998) Degradation of various chlorophenols under alkaline conditions by gram-negative bacteria closely related to Ochrobactrum anthropi. J Basic Microbiol 38:269–281. doi:10.1002/(SICI)1521-4028(199809)38:4<269::AID-JOBM269>3.0.CO;2-P

    Article  Google Scholar 

  • Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of gamma-hexachlorocyclohexane (lindane) and alpha-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. J Agric Food Chem 50:2548–2555. doi:10.1021/jf011422a

    Article  CAS  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191. doi:10.1007/s00253-004-1810-4

    Article  CAS  Google Scholar 

  • Qiu XH, Bai WQ, Zhong QZ, Li M, He FQ, Li BT (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994. doi:10.1111/j.1365-2672.2006.03016.x

    Article  CAS  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. ASM Press, Washington DC, pp 489–495

    Google Scholar 

  • Robinson GK, Lenn MJ (1994) The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives. Biotechnol Genet Eng Rev 12:139–188

    CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236. doi:10.1046/j.1462-2920.2001.00190.x

    Article  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2003) Enrichment and isolation of endosulfan-degrading microorganisms. J Environ Qual 32:47–54

    Article  CAS  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15. doi:10.1111/j.1574-6941.2000.tb00693.x

    Article  CAS  Google Scholar 

  • Yuan YJ, Lu ZX, Huang LJ, Bie XM, Lu FX, Li Y (2006) Optimization of a medium for enhancing nicotine biodegradation by Ochrobactrum intermedium DN2. J Appl Microbiol 101:691–697. doi:10.1111/j.1365-2672.2006.02929.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants SIP20070651 and SIP20070164 Instituto Politécnico Nacional (IPN). C. Hernández-Rodríguez and J. Jan-Roblero appreciate the fellowship of Comisión de Operación y Fomento de Actividades Académicas (COFAA) and Estímulo al Desempeño Académico (EDI), IPN, and Sistema Nacional de Investigadores (SNI), CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liz, J.A.ZE., Jan-Roblero, J., de la Serna, J.ZD. et al. Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum . World J Microbiol Biotechnol 25, 165–170 (2009). https://doi.org/10.1007/s11274-008-9875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9875-3

Keywords

Navigation