Skip to main content

Advertisement

Log in

Emission of Volatile Organic Compounds and Greenhouse Gases from the Anaerobic Bioremediation of Soils Contaminated with Diesel

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Bioremediation processes have been credited for reducing high levels of organic contaminants from soils. However, during the bioremediation of soils contaminated with diesel, the conversion of heavy molecules to volatile organic compounds (VOCs) and greenhouse gases (GHGs) and the volatilization of light molecules can occur. The ongoing construction of a large petrochemical complex in Rio de Janeiro (COMPERJ) and the transportation of large volumes of oil by-products have raised serious concerns regarding accidents that may result in soil contamination. Bioremediation is a potential technique that can be applied to minimize damage from such contamination. The objective of this study was to characterize the emission of GHGs and VOCs during the bioremediation of soils contaminated with diesel oil. Soil samples contaminated with 0.5, 2.0, and 4.0 w/w% diesel oil were kept in glass rectors (2 L internal volume) for 3 months under anaerobic/anoxic conditions. The soil moisture was kept at 80 % of the field capacity. Bioremediation processes were investigated in regard to nutrient adjustment (biostimulation), no adjustment (natural attenuation), and sterilized soil (abiotic process). The gases emitted from various reactors were collected with coconut shell charcoal cartridges, and the GHGs were collected in Tedlar bags. The chemical analyses of GHGs and VOCs were performed using gas chromatography. The results indicated that air samples contained high concentrations of CO2, but low concentrations of CH4. Differences in the composition of the gas emitted, regarding CO2, were not statistically significant. Regarding VOC emissions, such as alkanes and alkenes (both branched), cycloalkanes, and aromatic-substituted compounds, the compounds with higher emissions were cycloalkanes and branched alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausma, S., Edwards, G. C., Fitzgerald-hubble, C. R., Halfpenne, L. M., Gillespie, T. J., & Mortimer, W. P. (2002). Volatile hydrocarbon emissions from a diesel fuel contaminated soil bioremediation facility. Journal of the Air and Waste Management Association, 52(7), 769–780.

    Article  CAS  Google Scholar 

  • Barret, M., Carrière, H., Delgadillo, K., & Patureau, D. (2010). PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or cometabolism limit their biodegradation? Water Research, 44(13), 3797–3806.

    Article  CAS  Google Scholar 

  • Bartha, M. R. (1981). Problems associated with the use of azide as an inhibitor of microbial activity in soil. Applied and Environmental Microbiology, 41(3), 833–836.

    Google Scholar 

  • Bertrand, A.R. (1965). Rate of water intake in the field. In: BLACK, C.A., ed. Methods of soil analysis. American Society of Agronomy, 1, 197–209.

  • Bohn, H. L., Mcneal, B. L., & O'connor, G. A. (1979). Soil Chemistry. New York: Wiley.

    Google Scholar 

  • Brener, C. P., & Jackson, M. C. (1970). Mineralogical analysis of clays in soils developed from basalts in Australia. Israel Journal of Chemistry, 8, 481–500.

    Google Scholar 

  • Chiriac, R., De Araújo Morais, J., Carre, J., Bayard, R., Chovelan, J. M., & Gourdon, R. (2011). Study of the VOC emission from a municipal solid waste storage pilot-scale cell: comparison with biogases from municipal waste landfill site. Waste Management, 31(11), 2294–2301.

    Article  CAS  Google Scholar 

  • Colla, T. S., Andreazza, R., Bucker, F., Souza, M. M., Tramontini, L., Prado, G. R., et al. (2013). Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environmental Science and Pollution Research. doi:10.1007/s11356-013-2139-2.

    Google Scholar 

  • Da Cruz, G. F., Vasconcellos, S. P., Angolini, C. F. F., Dellagnezze, B. M., Garcia, I. N. S., Oliveira, V. M., et al. (2011). Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microorganisms in deed sea reservoirs? AMB Express, 1, 45–47.

    Article  Google Scholar 

  • Díaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7, 173–180.

    Google Scholar 

  • Diplock, E. E. (2009). Predicting bioremediation of hydrocarbons: laboratory to field scale. Environmental Pollution, 157(6), 1831–1840.

    Article  CAS  Google Scholar 

  • Eibes, G., Cajthmal, T., Moreira, M. T., Feijo, G., & Lema, J. M. (2006). Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 64(3), 408–414.

    Article  CAS  Google Scholar 

  • EMBRAPA. (1997). Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Manual de métodos de análise de solos (in Portuguese). 2. ed. — Rio de Janeiro: EMBRAPA — CNPS, 212 p.

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549.

    Article  CAS  Google Scholar 

  • Giostra, U., Furlani, F., Arduini, J., Cava, D., Manning, A. J., O’Doherty, J. J., et al. (2011). The determination of a “regional” atmospheric background mixing ratio for anthropogenic greenhouse gases: a comparison of two independent methods. Atmospheric Environment, 45(39), 7396–7405.

    Article  CAS  Google Scholar 

  • Hafner, S. D., Howard, C., Muck, R. E., Franco, R. B., Montes, F., Green, P. G., et al. (2013). Emission of volatile organic compounds from silage: compounds, sources and implications. Atmospheric Environment, 77, 828–839.

    Article  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1–3), 1–15.

    Article  CAS  Google Scholar 

  • He, X., Lau, A. K., Sokhansanj, S., Lim, C. J., Bi, X. T., & Melin, S. (2012). Dry master losses in combination with gaseous emissions during the storage of forest residues. Fuel, 95, 662–664.

    Article  CAS  Google Scholar 

  • Iranzo, M., Sainz-Padro, I., Boluda, R., Sanchez, J., & Mormeneo, S. (2001). The use of microorganisms in environmental engineering. Annals of Microbiology, 51, 135–143.

    Google Scholar 

  • Jacques, R., & Seminoti, J. (2006). Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos. São Gabriel: UNIPAMPA.

    Google Scholar 

  • Jϕrgensen, K. S. (2011). In situ bioremediation. Reference module in earth systems an environmental sciences — Comprehensive Biotechnology, 2nd ed. 59–67.

  • Karamallidis, A. K., Evangelou, A. C., Karabika, E., Kaikkou, A. I., Drainas, C., & Voudrias, E. A. (2010). Laboratory scale of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresource Technology, 101(16), 6545–6552.

    Article  Google Scholar 

  • Koornenerf, J., Ramírez, A., Turkenburg, W., & Faaj, A. (2012). The environment impact and risk assessment of CO2 capture, transport and storage — an evaluation of the knowledge base. Progress in Energy and Combustion Science, 38(1), 62–86.

    Article  Google Scholar 

  • Li, X. Z., Lin, X. G., Zhang, J., Wu, Y. C., Yin, R., Feng, Y. Z., et al. (2010). Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Current Microbiology, 60(5), 336–342.

    Article  CAS  Google Scholar 

  • Liebeg, E. W., & Cutright, T. J. (1999). The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration & Biodegradation, 44, 55–64.

    Article  CAS  Google Scholar 

  • Milić, J. S., Beškoski, V. P., Ilić, M. V., Ali, S. A. M., Gojgić-Cvijović, G. Đ., & Vrvić, M. M. (2009). Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. Journal of the Serbian Chemical Society, 74(4), 455–460.

    Article  Google Scholar 

  • Militon, C., Boucher, D., Vachelard, C., Perchet, G., Barra, V., Troquet, J., et al. (2010). Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiology Ecology, 74(3), 669–681.

    Article  CAS  Google Scholar 

  • Mumford, K. A., Dayner, J. K., Snape, I., Starck, S. C., Stevens, G. W., & Gore, D. B. (2013). Design installation and preliminary testing of permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Region Science and Technology, 96, 96–107.

    Article  Google Scholar 

  • Nakagawa, L. E., & Andréa, M. M. (2006). Efeito de alterações nas características do solo sobre a degradação de hexaclorobenzeno. Revista Brasileira de Ciência do Solo (In Portuguese), 30(3), 575–582.

    Article  CAS  Google Scholar 

  • Nester, E. W., Anderson, D. G., Roberts, C. E., Jr., Pearsall, N. N., & Nester, M. T. (2001). Microbiology: a human perspective (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • NIOSH. Manual of analytical methods. (2003). Fourth edition, hydrocarbons — Method 1500, Issue 3.

  • Palmieri, F., Santos, H. G., Gomes, I. A., Lumbreras, J. F., & Aglio, M. L. D. (2003). The Brazilian soil classification system. In H. Eswaran, T. Rice, R. Ahrens, & B. A. Stewart (Eds.), Soil classification: A global desk reference (pp. 127–146). Boca Raton: CRC Press.

    Google Scholar 

  • Pasumarthi, R., Cahndrasekaran, S., & Mutnuri, S. (2013). Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan Coast. Marine Pollution Bulletin, 76(1–2), 276–282.

    Article  CAS  Google Scholar 

  • Perfumo, A., Ibrahim, M., Roger, M., & Luigi, V. (2007). Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere, 66, 179–184.

    Article  CAS  Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide: Biomarkers and isotopes in the environment and human history (2nd ed.). Cambridge University Press: United Kingdom.

    Google Scholar 

  • Rodrigues, A., Nogueira, R., Melo, L. F., & Brito, A. G. (2013). Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons biodegradation. International Biodeterioration & Biodegradation, 83, 48–55.

    Article  CAS  Google Scholar 

  • Sarkar, D., Ferguson, M., Data, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 136, 187–195.

    Article  CAS  Google Scholar 

  • Singh, A., & Ward, O. P. (2004). Applied bioremediation and phytoremediation (soil biology — book 1). New York: Springer. 281 p.

    Book  Google Scholar 

  • Solomons, T. W. G., & Fryhle, C. B. (2011). Organic chemistry. New York: John Wiley & Sons. 744 p.

    Google Scholar 

  • Tammadoni, M., Sotudeh-Gharebagh, R., Nario, S., Hajihosseinzadeh, M., Mostoufi, N. (2013). Experimental study of the VOC emitted from crude oil tankers. Process Safety and Environmental Protection. In press, corrected proof.

  • Trevors, J. T. (1996). Sterilization and inhibition of microbial activity in soil. Journal of Microbiological Methods, 26(1–2), 53–59.

    Article  CAS  Google Scholar 

  • U.S. EPA. (1984). Method TO-2. Method for the determination of volatile organic compounds in ambient air by carbon molecular sieve adsorption and gas chromatography/mass spectrometry (GC/MS). Revision 1.0.

  • U.S. EPA. (1996). A citizen’s guide to bioremediation. EPA 542-F-96-007, 1–4.

  • Wang, X. D., Zhou, S. M., & Wang, A. L. (2005). Biodegradation of imazapyr in typical soils in Zhejiang Province, China. Journal of Environmental Sciences, 17(4), 593–597.

    CAS  Google Scholar 

  • Yu, S. H., Ke, L., Wong, Y. S., & Tam, N. F. Y. (2005). Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments. Environmental International, 31(2), 149–154.

    Article  CAS  Google Scholar 

  • Zou, S. C., Lee, S. C., Chan, C. Y., Ho, K. F., Wang, X. M., & Chan, L. Y. (2003). Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. Chemosphere, 51, 1015–1022.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Rio de Janeiro Foundation for Research Assistance (FAPERJ) as well as the Brazilian National Council for Scientific and Technological Development (CNPq) is acknowledged. The support for international exchange from the Swedish Foundation of International Cooperation in Research and Higher Education (STINT) was also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Machado Corrêa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, M.G., Corrêa, S.M., Marques, M. et al. Emission of Volatile Organic Compounds and Greenhouse Gases from the Anaerobic Bioremediation of Soils Contaminated with Diesel. Water Air Soil Pollut 225, 1879 (2014). https://doi.org/10.1007/s11270-014-1879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1879-z

Keywords

Navigation