Skip to main content
Log in

Activated Carbon from Lignocellulosic Waste Residues: Effect of Activating Agent on Porosity Characteristics and Use as Adsorbents for Organic Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper reports on the effect of activating agents such as the impregnation ratio of phosphoric acid (1:1–1:5) at constant activation temperature on the performance of porous activated carbon from waste residues (maize tassel). The variation in the impregnation ratio of the produced activated carbon (AC) from 1:1 to 1:5 enabled the preparation of a high surface area (1,263 m2/g) and a large pore volume (1.592 cm3/g) of AC produced from maize tassel (MT) using a convectional chemical activating agent (phosphoric acid). Impregnation ratios (IR) of the precursors were varied between 1:1 and 1:5 in which it was found that the ratio of 1:4 was optimal based on the high surface area, while 1:5 has the optimal pore volume value for the produced activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471–479.

    Article  CAS  Google Scholar 

  • Ahmadpour, A., & Do, D. D. (1997). The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35, 1723–1732.

    Article  CAS  Google Scholar 

  • Aksu, Z. J., & Yener, A. (2001). Comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Manag, 21, 695–702.

    Article  CAS  Google Scholar 

  • Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption. Boca Raton: Taylor and Francis.

    Book  Google Scholar 

  • Bansal, R. C., Donnet, J. B., & Stoeekli, H. F. (1988). Active carbon. New York: Marcel Dekker.

    Google Scholar 

  • Baquero, M. C., Giraldo, L., Moreno, J. C., Sua´rez-Garcı´a, F., Martı´nez-Alons, A., & Tasco´n, J. M. D. (2003). Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. Journal of Analytical Applied Pyrolysis, 70(2), 779–784.

    Article  CAS  Google Scholar 

  • Boonamnuavitaya, V., Sae-ung, S., & Tanthapanichakoon, W. (2003). Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation Purification Technology, 42, 159–168.

    Article  Google Scholar 

  • Bota, A., Laszlo, K., Nagy, L. G., & Schlimper, H. (1997). Active carbon from apricot pits. Magyar Kemiac Folyoirat, 103(9), 470–479.

    CAS  Google Scholar 

  • Daud, W. M. A., & Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol, 93, 63–69.

    Article  CAS  Google Scholar 

  • Demiral, H., Demiral, L., Karabacakoglu, B., & Tumsek, F. (2011). Production of activated carbon from olive bagasse by physical activation chem. Engineering Research Design, 89, 206–213.

    Article  CAS  Google Scholar 

  • Diao, Y., Walawender, W. P., & Fan, L. T. (2002). Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour Technol, 81, 45–52.

    Article  CAS  Google Scholar 

  • Elmorsi, T. M. (2011). Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. Journal of Environmental Protection, 2, 817–827.

    Article  CAS  Google Scholar 

  • G'omez-Serrano, V., Cuerda-Correa, E. M., Fern´andez-Gonz´ales, M. C., Alexandre-Franco, M. F., & Mac´ıas-Garc´ıa, A. (2005). Preparation of activated carbons from chestnut wood by phosphoric acid-chemical activation. Study of microporosity and fractal dimension. Material Letters, 59, 846–853.

    Article  Google Scholar 

  • Gaspard, S., Altenor, S., Dawson, E. A., Barnes, P. A., & Quensanga, A. (2007). Activated carbon from vetiver roots: gas and liquid adsorption studies. Journal Hazardous Material, 144, 73–81.

    Article  CAS  Google Scholar 

  • Guo, Y., & Rockstraw, D. A. (2006). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon, 44, 1464–1475.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal Hazardous Material, 160, 576–581.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Google Scholar 

  • Ho, Y. S., & Ofomaja, A. E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of hazardous materials, 129(1–3), 137–142.

    Google Scholar 

  • Hsu, L. Y., & Teng, H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process Technology, 64, 155–166.

    Article  CAS  Google Scholar 

  • Hu, Z., & Srinivasan, M. P. (1999). Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Material, 27, 11–18.

    Article  Google Scholar 

  • Hu, Z., Srinivasan, M. P., & Ni, Y. (2001). Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon, 39, 877–886.

    Article  CAS  Google Scholar 

  • Jagtoyen, M., & Derbyshire, F. (1998). Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 36, 1085–1097.

    Article  CAS  Google Scholar 

  • Jankowska, H., Swiatkowski, A., Choma, J. (1991). Active Carbon. Chichester, West Sussex: Ellis Horwood publisher.

  • Jaramillo, J., Modesto Alvarez, P., Gόmez-Serrano, V. (2010). Oxidation of activated carbon by dry and wet methods surface chemistry and textural modifications. Fuel Processing Technology, 91(11), 1768–1775.

    Google Scholar 

  • Laine, J., Calafat, A., & Labady, M. (1989). Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon, 27, 191–195.

    Article  CAS  Google Scholar 

  • Lua, A. C., & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid Interface Science, 274, 594–601.

    Article  CAS  Google Scholar 

  • Moreno-Castillo, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42, 83–94.

    Article  Google Scholar 

  • Moreno-Castillo, C., Rivera-Utrilla, J., Lopez-Ramon, M. V., & Crresco-Marin, F. (1995). Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon, 33, 845–851.

    Article  Google Scholar 

  • Mozammel, H. M., Masahiro, O., & Bhattacharya, S. C. (2002). Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy, 22, 397–400.

    Article  Google Scholar 

  • Namane, A., Mekarzia, A., Benrachedi, K., Bensemra, N., & Hellal, A. (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Material, 119, 189–194.

    Article  CAS  Google Scholar 

  • Olorundare, O. F., Krause, R. W. M., Okonkwo, J. O., & Mamba, B. B. (2012). Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Journal of Physics Chemistry of the Earth, 50–52, 104–110.

    Article  Google Scholar 

  • Parra, J. B., Sousa, J. C., Pis, J. J., Pajares, J. A., & Bansal, R. C. (1995). Effect of gasification on the porous characteristics of activated carbons from semi anthracite. Carbon, 33, 801–807.

    Article  CAS  Google Scholar 

  • Prahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J, 140, 32–42.

    Article  CAS  Google Scholar 

  • Puziy, A. M., Poddubnaya, O. I., Mart´ınez-Alonso, A., Su´arez-Garc´ıa, F., & Tasc´on, J. M. D. (2005). Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 43, 2857–2868.

    Article  CAS  Google Scholar 

  • Rodriguez-Reinoso, F., & Molina-Sabio, M. (1992). Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30, 1111–1118.

    Article  CAS  Google Scholar 

  • Ruland, W., & Smarsly, B. (2002). X-ray scattering of non-graphitic carbon: an improved method of evaluation. Journal of Applied Crystallography, 35, 624–633.

    Article  CAS  Google Scholar 

  • Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid Interface Science, 279, 307–313.

    Article  CAS  Google Scholar 

  • Srinivasakannan, C., & Bakar, M. Z. A. (2004). Production of activated carbon from rubber wood sawdust. Biomass Bioenergy, 27, 89–96.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids. Surface A: Physicochemical Engineering Aspects, 272, 89–104.

    Article  CAS  Google Scholar 

  • Sudaryanto, Y., Hartono, S. B., Irawaty, W., Hindarso, H., & Ismadji, S. (2006). High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol, 97, 734–739.

    Article  CAS  Google Scholar 

  • Teng, H., Yeh, T. S., & Hsu, L. H. (1998). Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon, 36, 1387–1395.

    Article  CAS  Google Scholar 

  • Timur, S., Kantarli, I. C., Ikizoglu, E., & Yanik, J. (2006). Preparation of activated carbons from oreganum stalks by chemical activation. Energy Fuels, 20, 2636–2641.

    Article  CAS  Google Scholar 

  • Vernersson, T., Bonelli, P. R., Cerrella, E. G., & Cukierman, A. L. (2001). Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation. Bioresour Technol, 83, 95–104.

    Article  Google Scholar 

  • Wang, T., Tan, S., & Liang, C. (2009). Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon, 47, 1880–1883.

    Article  CAS  Google Scholar 

  • Wang, L., Guo, Y., Zou, B., Rong, C., Ma, X., Qu, Y., Li, Y., & Wang, Z. (2011). High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour Technol, 102, 1947–1950.

    Article  CAS  Google Scholar 

  • Zvinowanda, C. M., Okonkwo, O. J., Agyei, N. M., & Shabalala, P. N. (2008a). Preparation and characterization of biosorbents made from maize tassel. Canadian Journal Pure Applied Science, 2(3), 483–488.

    Google Scholar 

  • Zvinowanda, C. M., Okonkwo, J. O., Mpangela, V., Phaleng, J., Shabalala, P. N., Dennis, T., Forbes, P., Agyei, N. A., & Ozoemena, K. I. (2008b). Biosorption of toxic metals: the potential use of maize tassel for the removal of Pb (II) from aqueous solutions. Fresenius Environmental Bulletin, 17(7a), 814–818.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University of Johannesburg for funding this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. M. Msagati or B. B. Mamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olorundare, O.F., Msagati, T.A.M., Krause, R.W.M. et al. Activated Carbon from Lignocellulosic Waste Residues: Effect of Activating Agent on Porosity Characteristics and Use as Adsorbents for Organic Species. Water Air Soil Pollut 225, 1876 (2014). https://doi.org/10.1007/s11270-014-1876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1876-2

Keywords

Navigation