Skip to main content
Log in

Linking Gas and Liquid Pressure Loss to Particle Size Distribution and Particle Shape in Granular Filter Materials

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The cost efficiency of filtration is often associated with the filter flow velocity (V) and pressure loss (ΔP). Knowledge of the V − ΔP relationship for a given filter medium–fluid combination is therefore necessary when assessing operation costs. Liquid V − ΔP measurements are generally much more time-consuming than for gases, thus predicting liquid V − ΔP relationships from corresponding gas data is advantageous. The objective of this work was to identify the relationship between air and water pressure gradients during air and water flow in granular filter media. Three materials: crushed granite, gravel, and Leca® (an insulation material) with very different particle shapes were used. Twenty-one media with different particle size distributions were produced from each material (63 in total) and V − ΔP measurements carried out using air and water. The results showed that it is indeed possible to predict liquid V − ΔP relationships from corresponding gas V − ΔP measurements together with medium physical characteristics. A simple model concept for prediction was proposed. The results also indicated that it is possible to predict both gas and liquid V − ΔP relationships in coarse granular filter media based simply on knowledge about the particle size distribution and particle shape for the medium in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, N., & Sunada, D. (1969). Nonlinear flow in porous media. Journal of Hydrologic Division-ASCE, 95(6), 1847–1857.

    Google Scholar 

  • Alexander, L., & Skaggs, R. W. (1986). Predicting unsaturated hydraulic conductivity from the soil–water characteristic. Transactions of ASAE, 29(1), 176–184.

    Article  Google Scholar 

  • Andreasen, R. R., & Poulsen, T. G. (2013). Air flow characteristics in granular biofilter media. Journal of Environmental Engineering-ASCE, 139(2), 196–204.

    Article  CAS  Google Scholar 

  • Andreasen, R. R., Canga, E., Kjaergaard, C., Iversen, B. V., Poulsen, T. G. (2013). Relating water and air flow characteristics in coarse granular materials. Water Air and Soil Pollut., 224(4), doi:10.1007/s11270-013-1469-5.

  • Antohe, B. V., Lage, J. L., Price, D. C., & Weber, R. M. (1997). Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices. Journal of Fluids Engineering, 119(2), 404–412.

    Article  CAS  Google Scholar 

  • Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2012). Biotrickling filtration of VOC emissions from pharmaceutical industries. Chemical Engineering Journal, 209, 102–112.

    Article  CAS  Google Scholar 

  • Blackwell, P. S., Ringrosevoase, A. J., Jayawardane, N. S., Olsson, K. A., McKenzie, D. C., & Mason, W. K. (1990). The use of air-filled porosity and intrinsic permeability to air to characterize structure of macropore space and saturated hydraulic conductivity of clay soils. Journal of Soil Science, 41(2), 215–228.

    Article  Google Scholar 

  • Chen, L., & Hoff, S. J. (2009). Mitigating odors from agricultural facilities: a review of literature concerning biofilters. Applied Engineering in Agriculture, 25(5), 751–766.

    Article  Google Scholar 

  • Cohen-Shoel, N., Barkay, Z., Ilzycer, D., Gilath, I., & Tel-Or, E. (2002). Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution, 135(1–4), 93–104.

    Article  CAS  Google Scholar 

  • Cornell, D., & Katz, D. L. (1953). Flow of gases through consolidated porous media. Industrial and Engineering Chemistry, 45(10), 2145–2152.

    Article  CAS  Google Scholar 

  • Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. V. Dalmont, ed. Paris, 647.

  • Den, W., Huang, C. P., & Li, C. H. (2004). Effects of cross-substrate interaction on biotrickling filtration for the control of VOC emissions. Chemosphere, 57(7), 697–709.

    Article  CAS  Google Scholar 

  • Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89–94.

    CAS  Google Scholar 

  • Erhan, E., Keskinler, B., Akay, G., & Algur, O. F. (2002). Removal of phenol from water by membrane-immobilized enzymes—Part I dead-end filtration. Journal of Membrane Science, 206(1–2), 361–373.

    Article  CAS  Google Scholar 

  • Firdaouss, M., Guermond, J. L., & LeQuere, P. (1997). Nonlinear corrections to Darcy's law at low Reynolds numbers. Journal of Fluid Mechanics, 343, 331–350.

    Article  Google Scholar 

  • Forchheimer, P. H. (1901). Wasserbewegung durch boden. Zeitschrift ver deutscher ingenieure, 50, 1782–1788 (in German).

    Google Scholar 

  • Geertsma, J. (1974). Estimating coefficient of inertial resistance in fluid-flow through porous-media. Society of Petroleum Engineers Journal, 14(5), 445–450.

    Article  Google Scholar 

  • Green, L., & Duwez, P. (1951). Fluid flow through porous metals. Journal of Applied Mechanics—Transactions of the Asme, 18(1), 39–45.

    CAS  Google Scholar 

  • He, Z. G., Li, J. J., Chen, J. Y., Chen, Z. P., Li, G. Y., Sun, G. P., et al. (2012). Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation. Chemical Engineering Journal, 200, 645–653.

    Article  Google Scholar 

  • Lage, J. L., Antohe, B. V., & Nield, D. A. (1997). Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media. Journal of Fluids Engineering - Transactions of the Asme, 119(3), 700–706.

    Article  CAS  Google Scholar 

  • Lee, S. H., Li, C. N., Heber, A. J., Ni, J. Q., & Huang, H. (2013). Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases. Bioresource Technology, 127, 366–377.

    Article  CAS  Google Scholar 

  • Leson, G., & Winer, A. M. (1991). Biofiltration—An innovative air-pollution control technology for voc emissions. Journal of the Air & Waste Management Association, 41(8), 1045–1054.

    Article  CAS  Google Scholar 

  • Loll, P., Moldrup, P., Schjonning, P., & Riley, H. (1999). Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling. Water Resources Research, 35(8), 2387–2400.

    Article  Google Scholar 

  • Macdonald, I. F., Elsayed, M. S., Mow, K., & Dullien, F. A. L. (1979). Flow through porous media—Ergun equation revisited. I&EC Fundamentals, 18(3), 199–208.

    Article  CAS  Google Scholar 

  • Macdonald, M. J., Chu, C. F., Guilloit, P. P., & Ng, K. M. (1991). A generalized blake-kozeny equation for multisized spherical-particles. Aiche Journal, 37(10), 1583–1588.

    Article  CAS  Google Scholar 

  • Mohammad, A., & Najar, M. (1997). Physico-chemical adsorption treatments for minimization of heavy metal contents in water and wastewaters. Journal of Scientific & Industrial Research, 56(9), 523–539.

    CAS  Google Scholar 

  • O’Neill, D. H., Stewart, I. W., & Phillips, V. R. (1992). A review of the control of odor nuisance from livestock buildings 2. The costs of odor abatement systems as predicted from ventilation requirements. Journal of Agricultural Engineering Research, 51(3), 157–165.

    Article  Google Scholar 

  • Pentland, A. (1927). A method of measuring the angularity of sands. Royal Soc. Canada, Proc. and Trans. 21(3), Appendix C.

  • Plascak, I., Puvaca, V., Jurisic, M., Rapcan, I., & Duvnjak, V. (2008). Influence of mineral and organic fertilizer on primary contamination of the ground waters in eastern Croatia. Cereal Research Communications, 36, 151–154.

    CAS  Google Scholar 

  • Poulsen, T. G., & Moldrup, P. (2007). Air permeability of compost as related to bulk density and volumetric air content. Waste Management & Research, 25(4), 343–351.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2012). Relating gas dispersion in porous media to medium tortuosity and anisotropy ratio. Water, Air, and Soil Pollution, 223(7), 4101–4118.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2013). Biofilter media gas pressure loss as related to media particle size and particle shape. Journal of Environmental Engineering, 139(12), 1424–1431.

    Google Scholar 

  • Riley, H., & Ekeberg, E. (1989). Ploughless tillage in large-scale trials. Norsk Landbruksforskning, 3, 107–115.

    Google Scholar 

  • Schjonning, P. (1986). Soil permeability by air and water as influenced by soil type and oncorporation of straw. Tidskrift for planteavl (Special issue).

  • Scotford, I. M., Burton, C. H., & Phillips, V. R. (1996). Minimum-cost biofilters for reducing odours and other aerial emissions from livestock buildings. 2. A model to analyse the influence of design parameters on annual costs. Journal of Agricultural Engineering Research, 64(2), 155–163.

    Article  Google Scholar 

  • Trussell, R. R., & Chang, M. (1999). Review of flow through porous media as applied to head loss in water filters. Journal of Environmental Engineering-ASCE, 125(11), 998–1006.

    Article  CAS  Google Scholar 

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.

    Article  Google Scholar 

  • Zeng, Z. W., & Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport in Porous Media, 63(1), 57–69.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Lazaridis, N. K., & Grohamm, A. (2002). Toxic metals removal from waste waters by upflow filtration with floating filter medium I. The case of zinc. Separation Science and Technology, 37(2), 403–416.

    Article  CAS  Google Scholar 

  • Wadell, H. (1935). Volume, shape and roundness of quartz particles. Journal of Geology, 43(3), 250–280.

    Article  Google Scholar 

  • Wang, W. D., Yang, H. W., Zhao, H. Z., & Jiang, Z. P. (2007). Transfer and transport of aluminum in filtration unit. Journal of Environmental Sciences-China, 19(8), 897–901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pugliese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, L., Poulsen, T.G. Linking Gas and Liquid Pressure Loss to Particle Size Distribution and Particle Shape in Granular Filter Materials. Water Air Soil Pollut 225, 1811 (2014). https://doi.org/10.1007/s11270-013-1811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1811-y

Keywords

Navigation