Skip to main content
Log in

Aqueous Mercury Sorption by Biochar from Malt Spent Rootlets

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochar produced from malt spent rootlets was employed for the removal of Hg(II) from pure aqueous solutions. Batch experiments were conducted at 25 °C. The optimum pH value for Hg(II) sorption onto biochar was 5. Biomass dose and contact time were examined to determine sorption kinetics and equilibrium capacity constants. The increase of biochar dose resulted in higher sorption efficiency. After a 24-h contact time at biochar concentrations of 0.3 and 1 g/L, the Hg(II) removal was 71 and 100 %, respectively. Based on the sorption kinetic data, the biochar sorption capacity for mercury reached its maximum after 2 h; 33 % of Hg(II) was removed within the first 5 min. Based on the isotherm data, the maximum biochar sorption capacity for Hg(II) was 103 mg/g. Finally, HCl, EDTA, NaCl, HNO3, H2SO4, and distilled water leaching solutions were tested for Hg(II) desorption with HCl being the most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anagnostopoulos, V. A., Manariotis, I. D., Karapanagioti, H. K., & Chrysikopoulos, C. V. (2012). Removal of mercury from aqueous solutions by malt spent rootlets. Chemical Engineering Journal, 213, 135–141.

    Article  CAS  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentiality low-cost sorbents for heavy metals. Water Research, 33, 2469–2479.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18, 1501–1507.

    Article  CAS  Google Scholar 

  • Carro, L., Anagnostopoulos, V., Lodeiro, P., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2010). A dynamic proof of mercury elimination from solution through a combined sorption–desorption process. Bioresource Technology, 101, 8969–8974.

    Article  CAS  Google Scholar 

  • Carro, L., Herrero, R., Barriada, J. L., & Sastre de Vicente, M. E. (2009). Mercury removal: a physicochemical study of metal interaction with natural materials. Journal of Chemical Technology and Biotechnology, 84, 1688–1696.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Driscoll, C. T., Lambert, K. F., Mason, R. P., Rardin, L. R., Serrell, N., et al. (2012). Marine mercury fate: from sources to seafood consumers. Environmental Research, 119, 1–2.

    Article  CAS  Google Scholar 

  • Chen, B. L., Zhou, D. D., & Zhu, L. Z. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • de Boer, J. H., Lippens, B. C., Linsen, B. G., Broekhoff, J. C. P., van der Heuvel, A., & Osinga, T. J. (1966). The t-curve of multilayer N2-adsorption. Journal of Colloid and Interface Science, 21, 405–414.

    Article  Google Scholar 

  • Deshkar, A. M., Bokade, S. S., & Dara, S. S. (1990). Modified Hardwickia binata bark for adsorption of mercury(II) from water. Water Research, 8, 1011–1016.

    Article  Google Scholar 

  • EC (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Communities, L 348, 24.12.2008, pp. 84–97.

  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, B136, 681–689.

    Article  Google Scholar 

  • Huang, C. P., & Blankenship, D. W. (1984). The removal of mercury (II) form dilute aqueous-solution by activated carbon. Water Research, 18, 37–46.

    Article  CAS  Google Scholar 

  • Inbaraj, B. S., & Sulochana, N. (2006). Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials, B133, 283–290.

    Article  Google Scholar 

  • Kalavathy, M. H., Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science, 292, 354–362.

    Article  CAS  Google Scholar 

  • Karthikeyan, J., & Chaudhuri, M. (1986). Enhancement of mercury (II) sorption from water from coal through chemical pretreatment. Water Research, 20, 449–452.

    Article  CAS  Google Scholar 

  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (Biochars). Environmental Science and Technology, 44, 6189–6195.

    Article  CAS  Google Scholar 

  • Knocke, W. R., & Hemphill, L. H. (1981). Mercury(II) sorption by waste rubber. Water Research, 15, 275–282.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of Colloid and Interface Science, 284, 14–21.

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, F.-S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167, 933–939.

    Article  CAS  Google Scholar 

  • Márquez-Mendoza, S., Jiménez-Reyes, M., Solache-Ríos, M., & Gutiérrez-Segura, E. (2011). Fluoride removal from aqueous solutions by a carnonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 223(5), 1959–1971.

    Article  Google Scholar 

  • Monteagudo, J. M., & Ortiz, W. J. (2000). Removal of inorganic mercury from mine wastewater by ion exchange. J Journal of Chemical Technology and Biotechnology, 75, 767–772.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kadirvelu, K. (1999). Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon, 37, 79–84.

    Article  CAS  Google Scholar 

  • Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., et al. (2012). Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96, 35–42.

    Article  CAS  Google Scholar 

  • Ranganathan, K. (2003). Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon, 41, 1087–1092.

    Article  CAS  Google Scholar 

  • Svecova, L., Spanelova, M., Kubal, M., & Guibal, E. (2006). Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry I. Equillibrium studies. Separation and Purification Technology, 52, 142–153.

    Article  CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131(2), 323–336.

    Article  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(1963), 31–60.

    Google Scholar 

  • Yardim, M. F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., & Minkova, V. (2003). Removal of mercury(II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52, 835–841.

    Article  CAS  Google Scholar 

  • Yu, X. Y., Ying, G. G., & Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54, 8545–8550.

    Article  CAS  Google Scholar 

  • Zabihi, M., Ahmadpour, A., & Haghighi Asl, A. (2009). Removal of mercury from water by carbonaceous sorbents derived from walnut shell. Journal of Hazardous Materials, 167, 230–236.

    Article  CAS  Google Scholar 

  • Zhang, F. S., Nriagu, J. O., & Itoh, H. (2005). Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39, 389–395.

    Article  CAS  Google Scholar 

  • Zhou, Z. L., Shi, D. J., Qiu, Y. P., & Sheng, G. D. (2009). Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environmental Pollution, 158, 201–206.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following people from the Department of Chemistry at the University of Patras: K.N. Fotopoulou for BET measurements and t plots; V.A. Anagnostopoulos and Ch. Kordulis for helpful discussions; and from the Foundation for Research and Technology, Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT): A.S. Beobide for ATR infrared spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Manariotis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

DOCX 234 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutsika, L.G., Karapanagioti, H.K. & Manariotis, I.D. Aqueous Mercury Sorption by Biochar from Malt Spent Rootlets. Water Air Soil Pollut 225, 1805 (2014). https://doi.org/10.1007/s11270-013-1805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1805-9

Keywords

Navigation