Skip to main content
Log in

Biotreatment of Melanoidin-Containing Distillery Spent Wash Effluent by Free and Immobilized Aspergillus oryzae MTCC 7691

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A total of three fungal isolates from samples collected at spent wash disposal area were screened for their ability to degrade melanoidin. Distillery molasses spent wash was decolorized, and its chemical oxygen demand (COD) was reduced in immobilized fungal bioreactor (IFB) in the absence of carbon and nitrogen source using fungal mycelia of Aspergillus oryzae MTCC 7691. Fungal mycelia immobilized on baggase packed in a glass column under a batch-wise mode (1) effected removal of 75.71 ± 0.12 % color, 51.0 ± 0.13 % biological oxygen demand (BOD), 86.19 ± 2.56 % COD, and 49.0 ± 0.12 % phenolic pigments of distillery spent wash up to 25 days at 30 °C, while free fungal mycelia resulted in removal of 63.1 ± 0.16 % color, 27.74 ± 0.14 % BOD, 76.21 ± 1.62 % COD, and 37.32 ± 0.17 % phenolic pigments of distillery spent wash using shake flask, (2) manganese peroxidase (MnP) activity was highest (1.55 ± 0.01 U ml−1 min−1) in immobilized fungi, followed by lignin peroxidase (0.65 ± 0.01 U ml−1 min−1) and laccase activity (0.9 ± 0.01 CU ml−1 min−1), (3) accumulative MnP activity was highly correlated with (r = 0.9216) spent wash decolorization and (r = 0.7282) reduction of phenolic pigments, suggesting the presence of MnP activities in bioremediation of spent wash and (4) degradation of spent wash was confirmed by high-performance thin layer chromatography and gas chromatography–mass spectrometry analysis. Measurement of chlorophyll a content of Chlorella species cultivated on treated spent wash effluent obtained from immobilized fungal bioreactor was 5.16 ± 0.71 μg ml−1 compared with 1.306 ± 0.017 μg ml−1 obtained with untreated spent wash. Thus, this work may provide a reasonable alternative for cost-effective bioremediation of distillery spent wash using immobilized A. oryzae on baggase fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggelis, G., Ethaliotis, C., Nerud, F., Stoychev, I., Lyberatos, G., & Zervakis, G. I. (2002). Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Applied Microbiology and Biotechnology, 59(2–3), 353–360.

    CAS  Google Scholar 

  • Andleeb, S., Atiq, N., Robson, G. D., & Ahmed, S. (2012). An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environmental Science and Pollution Research, 19(5), 1728–1737.

    Article  CAS  Google Scholar 

  • Arora, D. S., Chander, M., & Gill, P. K. (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration & Biodegradation, 50(2), 115–120.

    Article  CAS  Google Scholar 

  • Bonugli-Santos, R. C., Durrant, L. R., & Sette, L. D. (2012). The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. Water, Air, and Soil Pollution, 223(5), 2333–2345.

    Article  CAS  Google Scholar 

  • Chairattanamanokorn, P., Imai, T., Kondo, R., Sekine, M., Higuchi, T., & Ukita, M. (2005). Decolorization of alcohol distillery wastewater by thermotolerant white-rot fungi. Applied Biochemistry and Microbiology, 41(6), 583–588.

    Article  CAS  Google Scholar 

  • Chaudhari, A. B., Dandi, N. D., Vadnere, N. C., Patil, U. K., & Chincholkar, S. B. (2012). Bioethanol: a critical appraisal. In T. Satyanarayana, B. N. Johri, & A. Prakash (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 793–824). Berlin: Springer.

    Chapter  Google Scholar 

  • Chavan, M. N., Kulkarni, M. V., Zope, V. P., & Mahulikar, P. P. (2006). Microbial degradation of melanoidins in distillery spent wash by an indigenous isolate. Indian Journal of Biotechnology, 5(3), 416–421.

    CAS  Google Scholar 

  • Dahiya, J., Singh, D., & Nigam, P. (2001). Decolorization of synthetic and spent wash melanoidins using white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresource Technology, 78(1), 95–98.

    Article  CAS  Google Scholar 

  • Dandi, B. N., Dandi, N. D., Shelar, R. D., Chaudhari, A. B., & Chincholkar, S. B. (2010). Biological decolorisation of high concentration distillery spent wash using newly isolated microbial strains. Journal of Advances in Science and Technology, 13(2), 73–78.

    Google Scholar 

  • Dandi, N. D., Dandi, B. N., & Chaudhari, A. B. (2013a). Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp–peel compost for bioethanol production. Antonie van Leeuwenhoek, 103(4), 723–736.

    Article  CAS  Google Scholar 

  • Dandi, B. N., Dandi, N. D., Chaudhari, A. B. & Chincholkar, S. B. (2013b). Biodegradation of high gravity distillery effluent using microbes from different ecological habitats. Environmental Engineering and Management Journal (in press).

  • Dos Santos, V. C. G., De Souza, J. V. T. M., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2011). Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air, and Soil Pollution, 216(1–4), 351–359.

    Article  Google Scholar 

  • Eaton, A. D., Franson, M. A. H., & American Public Health Association. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Fahy, V., FitzGibbon, F. J., McMullan, G., Singh, D., & Marchant, R. (1997). Decolorization of molasses spent wash by Phanerochaete chrysosporium. Biotechnology Letters, 19(1), 97–99.

    Article  CAS  Google Scholar 

  • Fitzgibbon, F. J., Nigam, P., Singh, D., & Marchant, R. (1995). Biological treatment of distillery waste for pollution-remediation. Journal of Basic Microbiology, 35(5), 293–301.

    Article  CAS  Google Scholar 

  • Ghosh, M., Ganguli, A., & Tripathi, A. K. (2002). Treatment of anaerobically digested distillery spent wash in a two-stage bioreactor using Pseudomonas putida and Aeromonas sp. Process Biochemistry, 37(8), 857–862.

    Article  CAS  Google Scholar 

  • Ghosh, M., Varma, S. C., Mengoni, A., & Tripathi, A. K. (2004). Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent wash. Journal of Applied Microbiology, 96(6), 1278–1286.

    Article  CAS  Google Scholar 

  • Guimarães, C., Porto, P., Oliveira, R., & Mota, M. (2005). Continuous decolourization of a sugar refinery wastewater in a modified rotating biological contactor with Phanerochaete chrysosporium immobilized on polyurethane foam disks. Process Biochemistry, 40(2), 535–540.

    Article  Google Scholar 

  • Henry, D. P., & Thomson, R. H. (1993). A new process to treat strong biological waste. Water Science and Technology, 27(1), 213–218.

    CAS  Google Scholar 

  • Kaushik, G., & Thakur, I. S. (2013). Adsorption of colored pollutants from distillery spent wash by native and treated fungus: Neurospora intermedia. Environmental Science and Pollution Research, 20(2), 1070–1078.

    Article  CAS  Google Scholar 

  • Kim, S. J., & Shoda, M. (1999). Batch decolorization of molasses by suspended and immobilized fungus of Geotrichum candidum. Journal of Bioscience and Bioengineering, 88(5), 586–589.

    Article  CAS  Google Scholar 

  • Mielgo, I., Moreira, M. T., Feijoo, G., & Lema, J. M. (2002). Biodegradation of a polymeric dye in a pulsed bed bioreactor by Phanerochaete chrysosporium. Water Research, 36(7), 1896–1901.

    Article  CAS  Google Scholar 

  • Mohana, S., Desai, C., & Madamwar, D. (2007). Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresource Technology, 98(2), 333–339.

    Article  CAS  Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163(1), 12–25.

    Article  CAS  Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2013). Bioremediation concepts for treatment of distillery effluent. In R. C. Kuhad & A. Singh (Eds.), Biotechnology for environmental management and resource recovery (pp. 261–278). India: Springer.

  • Ohmomo, S., Kainuma, M., Kamimura, K., Sirianuntapiboon, S., Aoshima, I., & Atthasampunna, P. (1988). Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-2-32. Agricultural and Biological Chemistry, 52(2), 381–386.

    Article  CAS  Google Scholar 

  • Pant, D., & Adholeya, A. (2007a). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology, 98(12), 2321–2334.

    Article  CAS  Google Scholar 

  • Pant, D., & Adholeya, A. (2007b). Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation, 18(5), 647–659.

    Article  CAS  Google Scholar 

  • Raghukumar, C., Mohandass, C., Kamat, S., & Shailaja, M. S. (2004). Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme and Microbial Technology, 35(2–3), 197–202.

    Google Scholar 

  • Raghukumar, C., D'Souza-Ticlo, D., & Verma, A. K. (2008). Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Critical Reviews in Microbiology, 34(3–4), 189–206.

    Article  CAS  Google Scholar 

  • Singh, P., & Thakur, I. S. (2006). Colour removal of anaerobically treated pulp and paper mill effluent by microorganisms in two steps bioreactor. Bioresource Technology, 97(2), 218–223.

    Article  CAS  Google Scholar 

  • Singh, P. N., Robinson, T., & Singh, D. (2004). Distillery effluent. In A. Pandey (Ed.), Concise encyclopedia of bioresource technology (pp. 135–142). New York: Food Products Press Inc., Haworth Press.

  • Singh, K. D., Sharma, S., Dwivedi, A., Pandey, P., Thakur, R. L., & Kumar, V. (2007). Microbial decolorization and bioremediation of melanoidin containing molasses spent wash. Journal of Environmental Biology, 28(3), 675–677.

    CAS  Google Scholar 

  • Singh, A., Bajar, S., Bishnoi, N. R., & Singh, N. (2010). Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. Journal of Hazardous Materials, 176(1–3), 1079–1082.

    Article  CAS  Google Scholar 

  • Thakkar, A. P., Dhamankar, V. S., & Kapdnis, B. P. (2006). Biocatalytic decolorisation of molasses by Phanerochaete chrysosporium. Bioresource Technology, 97(12), 1377–1381.

    Article  CAS  Google Scholar 

  • Tiwari, S., Rai, P., Yadav, S. K., & Gaur, R. (2012). A novel thermotolerant Pediococcus acidilactici B-25 strain for color, COD, and BOD reduction of distillery effluent for end use applications. Environmental Science and Pollution Research 20(6), 4046–4058.

    Google Scholar 

  • Verma, P., & Madamwar, D. (2002). Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Applied Biochemistry and Biotechnology, 102–103(1–6), 109–118.

    Article  Google Scholar 

  • Wedzicha, B. L., & Kaputo, M. T. (1992). Melanoidins from glucose and glycine: composition, characterstics and reactivity towards sulphite ion. Food Chemistry, 43(5), 359–367.

    Article  CAS  Google Scholar 

  • Yadav, K. R., Chaudhari, A. B., Sharma, R. K., & Kothari, R. M. (2004). Preservation of bagasse by an alternative cost-effective and eco-friendly approach. Indian Journal of Chemical Technology, 11(5), 626–631.

    CAS  Google Scholar 

  • Zhang, F., Knapp, J. S., & Tapley, K. N. (1999). Development of bioreactor systems for decolorization of Orange II using white rot fungus. Enzyme and Microbial Technology, 24(1–2), 48–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the first authors Chavan MS wish to acknowledge the assistance rendered by Dr. SK Singh, Agharkar Research Institute, Pune, India for identification of fungal isolates. Financial assistance from the University Grants Commission, New Delhi, as UGC-JRF in engineering and technology scheme to Chavan MS and to School of Life Sciences (SLS), North Maharashtra University (NMU), Jalgaon in the form of SAP-DRS program is also greatly acknowledged. The authors are also grateful to the Department of Science and Technology, New Delhi for support under FIST program to SLS, NMU, Jalgaon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Chaudhari.

Additional information

M. N. Chavan and N. D. Dandi contributed equally to this study as first authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, M.N., Dandi, N.D., Kulkarni, M.V. et al. Biotreatment of Melanoidin-Containing Distillery Spent Wash Effluent by Free and Immobilized Aspergillus oryzae MTCC 7691. Water Air Soil Pollut 224, 1755 (2013). https://doi.org/10.1007/s11270-013-1755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1755-2

Keywords

Navigation