Skip to main content
Log in

Gas–Solute Dispersivity Ratio in Granular Porous Media as Related to Particle Size Distribution and Particle Shape

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Measurements of solute dispersion in porous media is generally much more time consuming than gas dispersion measurements performed under equivalent conditions. Significant time savings may therefore, be achieved if solute dispersion coefficients can be estimated based on measured gas dispersion data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined by fitting the advection–dispersion equation to the measured breakthrough curves and in turn used to calculate gas and solute dispersivities as a function of mean particle size (D m) and particle size range (R) for the 63 particle size fractions considered. The results show that solute and gas dispersivities are related and that their ratio depends on both R and D m. Based on these observations a simple model for predicting the dispersivity ratio from D m and R, was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arands, R., Lam, T., Massry, I., Berler, D. H., Muzzio, F. J., & Kosson, D. S. (1997). Modeling and experimental validation of volatile organic contaminant diffusion through an unsaturated soil. Water Resources Research, 33(4), 599–609.

    Article  CAS  Google Scholar 

  • Atteia, O., & Hohener, P. (2010). Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface. Environmental Science and Technology, 44(16), 6228–6232.

    Article  CAS  Google Scholar 

  • Bear, J. (1961). On the tensor form of dispersion in porous media. Journal of Geophysical Research, 66(4), 1185–1197.

    Article  Google Scholar 

  • Brenner, H. (1980). Dispersion resulting from flow through spatially periodic porous-media. Philosophical Transactions of the Royal Society A, 297(1943), 81–133.

    Article  Google Scholar 

  • Bromly, M., Hinz, C., & Aylmore, L. A. G. (2007). Relation of dispersivity to properties of homogeneous saturated repacked soil columns. European Journal of Soil Science Research, 58(1), 293–301.

    Article  Google Scholar 

  • Brusseau, M. L. (1993). The influence of solute size, pore water velocity, and intraparticle porosity on solute dispersion and transport in soil. Water Resources Research, 29(4), 1071–1080.

    Article  CAS  Google Scholar 

  • Coelho, M. A. N., & Guedes de Carvalho, J. R. F. G. (1988). Transverse dispersion in granular beds: Part I-mass transfer from a wall and the dispersion coefficient in packed-beds. Chemical Engineering Research and Design, 66(2), 165–177.

    CAS  Google Scholar 

  • Costanza-Robinson, M. S., & Brusseau, M. L. (2002). Gas phase advection and dispersion in unsaturated porous media. Water Resources Research, 38(4), 7.1–7.9.

    Article  Google Scholar 

  • De Visscher, A., Thomas, D., Boeckx, P., & Van Cleemput, O. (1999). Methane oxidation in simulated landfill cover soil environments. Environmental Science and Technology, 33(11), 1854–1859.

    Article  Google Scholar 

  • Delgado, J. M. P. Q. (2006). A critical review of dispersion in packed beds. Heat and Mass Transfer, 42(4), 279–310.

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 44). New York: Wiley.

    Google Scholar 

  • Edwards, M. F., & Richards, J. F. (1968). Gas dispersion in packed beds. Chemical Engineering Science, 23(2), 109–123.

    Article  CAS  Google Scholar 

  • El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental impacts of solid waste landfilling. Journal of Helminthology, 50(1), 1–25.

    Google Scholar 

  • Evans, E. V., & Kenney, C. N. (1966). Gaseous dispersion in packed beds at low Reynolds numbers. Transactions Institute of Chemical Engineers, 44(6), T189–T197.

    CAS  Google Scholar 

  • Fukumoto, Y., Osada, T., Hanajima, D., & Haga, K. (2003). Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration—effect of compost pile scale. Bioresource Technology, 89(2), 109–114.

    Article  CAS  Google Scholar 

  • Gerke, H. H., & van Genuchten, M. T. (1996). Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advances in Water Resources, 19(6), 343–357.

    Article  Google Scholar 

  • Gidda, T., Cann, D., Stiver, W. H., & Zytner, R. G. (2006). Airflow dispersion in unsaturated soil. Journal of Contaminant Hydrology, 82(1–2), 118–132.

    Article  CAS  Google Scholar 

  • Greenkor, R. A., & Kessler, D. P. (1969). Dispersion in heterogeneous nonuniform anisotropic porous media. Industrial and Engineering Chemistry, 61(9), 14–32.

    Article  Google Scholar 

  • Hamamoto, S., Moldrup, P., Kawamoto, K., Komatsu, T., & Rolston, D. E. (2009). Unified measurement system for the gas dispersion coefficient, air permeability, and gas diffusion coefficient in variably saturated soil. Soil Science Society of America Journal, 73(6), 1921–1930.

    Article  CAS  Google Scholar 

  • Han, N. W., Bhakta, J., & Carbonell, R. G. (1985). Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution. AICHE Journal, 31(2), 277–288.

    Article  CAS  Google Scholar 

  • Hunt, A. G., & Skinner, T. E. (2010). Predicting dispersion in porous media. Complexity, 16(1), 43–55.

    Article  Google Scholar 

  • Lewis, J., & Sjostrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Contaminant Hydrology, 115(1–4), 1–13.

    Article  CAS  Google Scholar 

  • Liang, Y. K., Quan, X., Chen, J. W., Chung, J. S., Sung, J. Y., Chen, S., Xue, D. M., & Zhao, Y. Z. (2000). Long-term results of ammonia removal and transformation by biofiltration. Journal of Hazardous Materials, 80(1–3), 259–269.

    Article  CAS  Google Scholar 

  • Loll, P., Moldrup, P., Schjonning, P., & Riley, H. (1999). Predicting saturated hydraulic conductivity from air permeability: application in stochastic water infiltration modeling. Water Research, 35(8), 2387–2400.

    Article  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one or two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1), 50–60.

    Article  Google Scholar 

  • Pangala, S. R., Reay, D. S., & Heal, K. V. (2010). Mitigation of methane emissions from constructed farm wetlands. Chemosphere, 78(5), 493–499.

    Article  CAS  Google Scholar 

  • Pennock, D., Yates, T., Bedard-Haughn, A., Phipps, K., Farrell, R., & McDougal, R. (2010). Landscape controls on N(2)O and CH(4) emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region. Geoderma, 155(3–4), 308–319.

    Article  CAS  Google Scholar 

  • Pentland, A. (1927). A method of measuring the angularity of sands. MAG. MN. A.L. Acta Eng. Dom. Transaction of the Royal Society of Canada. Vol. 21(3), xciii.

  • Popovicova, J., & Brusseau, M. L. (1997). Dispersion and transport of gas-phase contaminants in dry porous media: effect of heterogeneity and gas velocity. Journal of Contaminant Hydrology, 28(1–2), 157–169.

    Article  CAS  Google Scholar 

  • Poulsen, T. G., Suwarnarat, W., Hostrup, M. K., & Kalluri, P. N. V. (2008). Simple and rapid method for measuring gas dispersion in porous media: methodology and applications. Soil Science, 173(3), 169–174.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2012). Relating gas dispersion in porous media to medium tortuosity and anisotropy ratio. Water, Air, and Soil Pollution, 223(7), 4101–4118.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2013). Biofilter media gas pressure loss as related to media particle size and particle shape. Accepted for publication in Journal of Environmental Engineering.

  • Rose, D. A. (1973). Some aspects of hydrodynamic dispersion of solutes in porous materials. Soil Science, 24(3), 285–295.

    Google Scholar 

  • Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. European Journal of Soil Science, 61(5), 683–696.

    Article  CAS  Google Scholar 

  • Scheidegger, A. E. (1974). The physics of flow through porous media (3rd ed.). Toronto, Ontario: University of Toronto Press.

    Google Scholar 

  • Schjonning, P. (1986). Soil permeability by air and water as influenced by soil type and incorporation of straw. Tidsskrift for Planteavl, 90, 227–240.

    Google Scholar 

  • Sharma, P., & Poulsen, T. G. (2010). Gas dispersion and immobile gas content in granular porous media: effect of particle size nonuniformity. Soil Science, 175(9), 426–431.

    Article  CAS  Google Scholar 

  • Silva, O., & Grifoll, J. (2009). Non-passive transport of volatile organic compounds infiltrated from a surface disk source. Transport in Porous Media, 77(1), 103–129.

    Article  CAS  Google Scholar 

  • Sinclair, R. J., & Potter, O. E. (1965). Dispersion of gas in flow through a bed of packed solids. Transactions Institute of Chemical Engineers, 43(1), T3–T9.

    CAS  Google Scholar 

  • Suzuki, M., & Smith, J. M. (1972). Dynamics of diffusion and adsorption in a single catalyst pellet. AICHE Journal, 18(2), 326–333.

    Article  CAS  Google Scholar 

  • Tan, C. S., & Liou, D. C. (1989). Axial dispersion of supercritical carbon dioxide in packed beds. Industrial and Engineering Chemistry Research, 28(8), 1246–1250.

    Article  CAS  Google Scholar 

  • Thomson, N. R., Sykes, J. F., & Van Vliet, D. (1997). A numerical investigation into factors affecting gas and aqueous phase plumes in the subsurface. Contaminant Hydrology, 28(1–2), 39–70.

    Article  CAS  Google Scholar 

  • Thummes, K., Kaempfer, P., & Jaeckel, U. (2007). Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material. Systematic and Applied Microbiology, 30(5), 418–429.

    Article  CAS  Google Scholar 

  • Wadell, H. (1935). Volume, shape and roundness of quartz particles. Journal of Geology, 43(3), 250–280.

    Article  Google Scholar 

  • Wang, F., & Ward, I. C. (2002). Radon entry, migration and reduction in houses with cellars. Building and Environment, 37(11), 1153–1165.

    Article  Google Scholar 

  • Whitaker, S. (1967). Diffusion and dispersion in porous media. AICHE Journal, 13(3), 420–432.

    Article  CAS  Google Scholar 

  • White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., & Pennline, H. W. (2003). Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. Journal of the Air and Waste Management Association, 53(6), 645–715.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pugliese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, L., Poulsen, T.G. & Straface, S. Gas–Solute Dispersivity Ratio in Granular Porous Media as Related to Particle Size Distribution and Particle Shape. Water Air Soil Pollut 224, 1691 (2013). https://doi.org/10.1007/s11270-013-1691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1691-1

Keywords

Navigation