Skip to main content
Log in

Leaves and Roots of Pistia stratiotes as Sorbent Materials for the Removal of Crude Oil from Saline Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The removal and sorption of oil from saline solutions by leaves (L) and roots (R) of Pistia stratiotes are described for the first time. The effects of biomass dose (0.5 and 1.0 g), contact time (30, 60, 90, and 120 min), and initial oil concentration (IOC = 979 ± 9.82, 1,968 ± 8.01, 3,935 ± 40.09, 7,778 ± 196.42, and 15,694 ± 196.41 mg L−1) on removal and sorption (q) were evaluated. Studies included a physicochemical characterization of the biomass. High oil removal (L = 93.71 ± 0.18 % and R = 80.93 ± 0.11 %) and sorption values (L = 2,904.47 ± 4.49 mg g−1 and R = 2,324.38 ± 29.29 mg g−1) were found. Such a high sorption might be related to factors such as a high surface area (128.38 ± 0.61 and 112.62 ± 5.17 m2 g−1, for leaves and roots, respectively), a high degree of relative hydrophobicity in the case of the leaves (71.05 ± 0.71 %), and capillary action. A high correlation was found between IOC and sorption, suggesting that the biomass could adsorb oil at IOCs higher than 15,694 ± 196.41 mg L−1. The Freundlich isotherm model was found to best describe crude oil sorption by leaves and roots of P. stratiotes. These sorbent materials could be good candidates to be used during an oil spill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. Journal of Porous Materials, 10(3), 159–170.

    Article  CAS  Google Scholar 

  • Agbogidi, O. M., & Bamidele, J. F. (2007). Suitability of Pistia stratiotes Linn. and Spirodela polyrrhiza Trev. for the removal of pollutants in oil polluted water bodies. Discovery and Innovation, 19, 102–107.

    Google Scholar 

  • Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340–1346.

    Article  CAS  Google Scholar 

  • AOAC. (1998). Official methods of analyses (16th ed.). Washington, DC: Association of Official Analytical Chemists AOAC.

    Google Scholar 

  • Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., et al. (2010). The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Advances Materials, 22(21), 2325–2328.

    Article  CAS  Google Scholar 

  • Brandão, P. C., Souza, T. C., Ferreira, C. A., Hori, C. E., & Romanielo, L. L. (2010). Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. Journal of Hazardous Materials, 175(1–3), 1106–1112.

    Article  Google Scholar 

  • Bugbee, G. J., & Balfour, M. E. (2010). Field guide Connecticut’s invasive aquatic and wetlands, The Connecticut Agricultural Experiment Station. Bulletin No. 1027.

  • Carmody, O., Frost, R., Xi, Y., & Kokot, S. (2007). Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surface Science, 601(9), 2066–2076.

    Article  CAS  Google Scholar 

  • Chhay, T., Borin, K., & Preston, T. R. (2007). Effect of mixtures of water spinach and fresh water hyacinth leaves on growth performance of pigs fed a basal diet of rice bran and cassava root meal. Livestock Research for Rural Development, 19, 194.

    Google Scholar 

  • Cojocaru, C., Macoveanu, M., & Cretescu, I. (2011). Peat-based sorbents for the removal of oil spills from water surface: application of artificial neural network modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 675–684.

    Article  CAS  Google Scholar 

  • Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, & Barthlott, W. (2011). Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2, 152–161.

    Article  CAS  Google Scholar 

  • Gui, X., Li, H., Wang, K., Wei, J., Jia, Y., Li, Z., et al. (2011). Recyclable carbon nanotube sponges for oil absorption. Acta Materialia, 59(12), 4798–4804.

    Article  CAS  Google Scholar 

  • Hasan, M. R., & Chakrabarti, R. (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper. No. 531. Rome, FAO.

  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1–4), 1–33.

    Article  CAS  Google Scholar 

  • Ji, F., Li, C., Dong, X., Li, Y., & Wang, D. (2009). Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. Journal of Hazardous Materials, 164(2–3), 1346–1351.

    Article  CAS  Google Scholar 

  • Khan, E., Virojnagud, W., & Ratpukdi, T. (2004). Use of biomass sorbents for oil removal from gas station runoff. Chemosphere, 57(7), 681–689.

    Article  CAS  Google Scholar 

  • Lim, T. T., & Huang, X. (2007). Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 66(5), 955–963.

    Article  CAS  Google Scholar 

  • Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17(1), 84–96.

    Article  CAS  Google Scholar 

  • Matthews, G. P., Watts, W., Powlson, D. S., Price, J. C., & Whalley, W. R. (2008). Wetting of agricultural soil measured by a simplified capillary rise technique. European Journal of Soil Science, 59(4), 817–823.

    Article  Google Scholar 

  • Moriwaki, H., Kitajima, S., Kurashima, M., Hagiwara, A., Haraguchi, K., Shirai, K., et al. (2009). Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water. Journal of Hazardous Materials, 165(1–3), 266–270.

    Article  CAS  Google Scholar 

  • Paul, A. (2012). Azolla filiculoides (water fern). United Kingdom Natural History Museum http://www.nhm.ac.uk/nature-online/species-of-the-day/biodiversity/economic-impact/azolla-filiculoides/index.html.

  • Rajakovic-Ognjanovic, V., Aleksic, G., & Rajakovic, L. G. (2008). Governing factors for motor oil removal from water with different sorption materials. Journal of Hazardous Materials, 154(1–3), 558–563.

    Article  CAS  Google Scholar 

  • Ramey, V. (2001). Water lettuce (Pistia stratiotes). Center for Aquatic and Invasive Plants, University of Florida. http://plants.ifas.ufl.edu/node/328.

  • Ribeiro, T. H., Smith, R. W., & Rubio, J. (2000). Sorption of oils by the nonliving biomass of Salvinia sp. Environmental Science and Technology, 34(24), 5201–5205.

    Article  CAS  Google Scholar 

  • Ribeiro, T. H., Rubio, J., & Smith, R. W. (2003). A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Science and Technology B, 8(5–6), 483–489.

    Article  CAS  Google Scholar 

  • Sánchez-Galván, G., & Olguín, E. J. (2009). A holistic approach to phytofiltration of heavy metals: recent advances in rhizofiltration, constructed wetlands, lagoons, and bioadsorbent-based systems. In L. K. Wang, Y. Hung, & N. K. Shammas (Eds.), Handbook of advanced industrial and hazardous wastes treatment (pp. 389–408). Boca Raton: CRC.

    Chapter  Google Scholar 

  • Sánchez-Galván, G., Gómez, J., Monroy, O., & Olguín, E. J. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil Pollution, 194(1–4), 77–90.

    Article  Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2010). Oil removal from water by fungal biomass: a factorial design analysis. Journal of Hazardous Materials, 175(1–3), 695–702.

    Article  CAS  Google Scholar 

  • Tan, C. Y., Li, G., Lu, X. Q., & Chen, Z. L. (2010). Biosorption of basic orange using dried A. filiculoides. Ecological Engineering, 36(10), 1333–1340.

    Article  Google Scholar 

  • Verma, V. K., Tewari, S., & Rai, J. P. N. (2008). Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology, 99(6), 1932–1938.

    Article  CAS  Google Scholar 

  • Wei, Q. F., Mather, R. R., Fotheringham, A. F., & Yang, R. D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil spill recovery. Marine Pollution Bulletin, 46(6), 780–783.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Council of Science and Technology (CONACYT) and the Government of Veracruz State through the FOMIX 36998 Grant. Ranulfo Castillo, Alejandro Hernández, and Ricardo E. González-Portela are thanked for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Sánchez-Galván.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Galván, G., Mercado, F.J. & Olguín, E.J. Leaves and Roots of Pistia stratiotes as Sorbent Materials for the Removal of Crude Oil from Saline Solutions. Water Air Soil Pollut 224, 1421 (2013). https://doi.org/10.1007/s11270-012-1421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1421-0

Keywords

Navigation