Skip to main content
Log in

Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rates of biosorption of cadmium and copper ions by nonliving biomass of the brown macroalga Sargassum sinicola under saline conditions were studied. Batch experiments show that the ability to remove cadmium is significantly diminished (from 81.8% to 5.8%), while the ability to remove copper remains high (from 89% to 80%) at a range of salinity from 0 to 40 psu. Maximum capacity of biosorption at 35 psu was 3.44 mg g−1 for cadmium and 116 mg g−1 for copper. The presence of salt did not significantly affect the rate of biosorption, which was about 90% of saturation in 60 min for both metals. There is an antagonistic effect on biosorption when both metals are present in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antunes, W. M., Luna, A. S., Henriques, C. A., & Costa, A. C. (2003). An evaluation of copper biosorption by brown seaweed under optimized conditions. Electronic Journal of Biotechnology. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582003000300003&lng=es&nrm=iso. Accessed 3 Jun 2009

  • Brierley, J. A., Goyak, G. M., & Brierley, C. L. (1986). Considerations for commercial use of natural products for metals recovery. In H. Eccles & S. Hunt (Eds.), Immobilization of ions by biosorption (pp. 105–117). Chichester: Ellis Horwood.

    Google Scholar 

  • Cañizares-Villanueva, R. O. (2000). Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología, 42, 131–141.

    Google Scholar 

  • Casas-Valdez, M. (2009). El alga marina Sargassum (Sargassaceae) en el desarrollo regional. In: J. Urciaga-García, D. Lluch-Belda, L. F. Beltrán-Morales (Eds.), Recursos marinos y servicios ambientales en el desarrollo regional (pp. 139–156). La Paz, México: CIBNOR.

  • Davis, T. A., Volesky, B., & Vieira, R. H. S. F. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 34, 4270–4278.

    Article  CAS  Google Scholar 

  • Dönmez, G., & Aksu, Z. (2002). Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochemistry, 38, 751–762.

    Article  Google Scholar 

  • Gadd, G. M. (2008). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13–28.

    Google Scholar 

  • Holan, Z. R., Volesky, B., & Prasetyo, I. (1993). Biosorption of Cd by biomass of marine algae. Biotechnology and Bioengineering, 41, 819–825.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., De León-Chavira, F., Lares, M. L., Chee-Barragán, A., & Siqueiros-Valencia, A. (2007). Iron, manganese and trace metal concentrations in seaweeds from the central west coast of the Gulf of California. Applied Geochemistry, 22, 1380–1392.

    Article  CAS  Google Scholar 

  • Kaewsarn, P. (2002). Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere, 47, 1081–1085.

    Article  CAS  Google Scholar 

  • Kratochivil, D., & Volesky, B. (1998). Biosorption of Cu from ferruginous wastewater by algal biomass. Water Research, 32, 2760–2768.

    Article  Google Scholar 

  • Lodeiro, P., Cordero, B., Grille, Z., Herrero, R., & Sastre de Vicente, M. E. (2004). Physicochemical studies of cadmium (II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnology and Bioengineering, 88, 237–247.

    Article  CAS  Google Scholar 

  • Méndez, L., Palacios, E., Acosta, B., Monsalvo-Spencer, P., & Alvarez-Castañeda, T. (2006). Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico. Biological Trace Element Research, 110, 275–287.

    Article  Google Scholar 

  • Pivovarov, S. (2003). Physico-chemical modeling of heavy metals (zinc, cadmium, copper) in natural environments. In A. Hubbard & P. Somasundaran (Eds.), Encyclopedia of surface and colloid science. New York: Marcel Dekker.

    Google Scholar 

  • Rodríguez-Figueroa, G. M., Shumilin, E., & Sanchez-Rodriguez, I. (2008). Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. Journal of Applied Phycology, 21, 19–26.

    Article  Google Scholar 

  • Sánchez-Rodríguez, I., Huerta-Diaz, M. A., Choumiline, E., Holguín-Quiñones, O., & Zertuche-González, J. A. (2001). Elemental concentrations in different species of seaweed from Loreto bay (Baja California del Sur), Mexico. Implications for the geochemical control of metals in algal tissues. Environmental Pollution, 114, 145–160.

    Article  Google Scholar 

  • Schiewer, S., & Volesky, B. (1999). Advances in biosorption of heavy metals. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of bioprocess engineering (pp. 433–453). New York: Wiley.

    Google Scholar 

  • Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickle by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal Colloid and Interface Science, 275, 131–141.

    Article  CAS  Google Scholar 

  • Sheng, P. X., Ting, Y. P., & Chen, J. P. (2007). Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single and multiple-metal systems. Industrial & Engineering Chemistry Research, 46, 2438–2444.

    Article  CAS  Google Scholar 

  • Shumilin, E. N., Rodríguez-Figueroa, G., Morton-Bermea, O., Lounejeva-Baturina, E., Hernández, E., & Rodríguez-Meza, G. D. (2000). Anomalous trace element composition of coastal sediments near the copper mining district of Santa Rosalia, Peninsula of Baja California, Mexico. Bulletin Environmental Contamination and Toxicology, 65, 261–268.

    Article  CAS  Google Scholar 

  • Stirk, W. A., & Van Staden, J. (2000). Removal of heavy metals from solution using dried brown seaweed material. Botanica Marina, 43, 467–473.

    Article  CAS  Google Scholar 

  • Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11, 235–250.

    Article  CAS  Google Scholar 

  • Volesky, B., Weber, J., & Vieira, R. (1999). Biosorption of Cd and Cu by different types of Sargassum biomass. Process Metallurgy, 9, 473–482.

    Article  Google Scholar 

  • Yun, Y. S., Niu, H., & Volesky, B. (2001). The effect of impurities on metal biosorption. International Biohydrometallurgy Symposium, Brazil, pp. 181–187.

  • Zhou, J. L., Huang, P. L., & Lin, R. G. (1998). Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environmental Pollution, 101, 67–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Griselda Peña Armenta at CIBNOR for laboratory assistance and Ira Fogel and Diana Fischer for editorial improvements. This research was supported by Centro de Investigaciones Biológicas del Noroeste (project grant PC 2.1). Mónica Patrón-Prado received a doctoral grant fellowship from CONACYT of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lía C. Méndez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E. et al. Copper and Cadmium Biosorption by Dried Seaweed Sargassum sinicola in Saline Wastewater. Water Air Soil Pollut 210, 197–202 (2010). https://doi.org/10.1007/s11270-009-0241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0241-3

Keywords

Navigation