Skip to main content
Log in

Enhanced Removal of Micropollutants from Groundwater, Using pH Modification Coupled with Photolysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Direct ultraviolet (UV) photolysis coupled with modification of solution pH was explored as a method for the removal of organic micropollutants from groundwater. Photodegradation rates of most of the investigated compounds were pH dependent, however, its correlation with photodegradation rate varied among compounds. The potential of the pH modification during photolysis was determined for removal of a mixture of two pharmaceuticals sulfamethoxazole (SMX) and triclosan (TCS) in groundwater. The treatment included initial photolysis of the mixture at the optimal pH for TCS (i.e., 7.5–7.9), followed by pH modification to the optimal pH for SMX (i.e., 5), prior to a second irradiation period. The described procedure dramatically increased the removal efficiency (up to threefold) of the treated mixture compared to UV treatment at constant pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avisar, D., Lester, Y., & Mamane, H. (2010). pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water. Journal of Hazardous Materials, 175(1–3), 1068–1074.

    Article  CAS  Google Scholar 

  • Avisar, D., Lester, Y., & Ronen, D. (2009). Sulfamethoxazole contamination of a deep phreatic aquifer. Science of the Total Environment, 407(14), 4278–4282.

    Article  CAS  Google Scholar 

  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and 12 other organic wastewater contaminants in the United States-I groundwater. Science of the Total Environment, 402(2–3), 192–200.

    Article  CAS  Google Scholar 

  • Batt, A. L., Snow, D. D., & Aga, D. S. (2006). Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere, 64(11), 1963–1971.

    Article  CAS  Google Scholar 

  • Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering-ASCE, 129(3), 209–215.

    Article  CAS  Google Scholar 

  • Boreen, A. L., Arnold, W. A., & McNeill, K. (2004). Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environmental Science and Technology, 38(14), 3933–3940.

    Article  CAS  Google Scholar 

  • Canonica, S., Meunier, L., & Von Gunten, U. (2008). Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 42(1–2), 121–128.

    Article  CAS  Google Scholar 

  • Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335–1343.

    Article  CAS  Google Scholar 

  • Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental Pollution, 144(1), 184–189.

    Article  CAS  Google Scholar 

  • Fasani, E., Rampi, M., & Albini, A. (1999). Photochemistry of some fluoroquinolones: effect of pH and chloride ion. Journal of the Chemical Society-Perkin Transactions, 2(9), 1901–1907.

    Google Scholar 

  • Felis, E., & Miksch, K. (2009). Removal of analgesic drugs from the aquatic environment using photochemical methods. Water Science and Technology, 60(9), 2253–2259.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225(1–2), 109–118.

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong, A., Suski, J. G., Shah, A. A., Cai, Q. S., Morse, A. N., & Anderson, T. A. (2011). Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water, Air, and Soil Pollution, 216(1–4), 257–273. 13.

    Article  CAS  Google Scholar 

  • Kim, I., Yamashita, N., & Tanaka, H. (2009). Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere, 77(4), 518–525.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2009). The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366.

    Article  Google Scholar 

  • Lam, M. W., Tantuco, K., & Mabury, S. A. (2003). PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environmental Science and Technology, 37(5), 899–907.

    Article  CAS  Google Scholar 

  • Lee, C., Choi, W., Kim, Y. G., & Yoon, J. (2005). UV photolytic mechanism of N-nitrosodimethylamine in water: dual pathways to methylamine versus dimethylamine. Environmental Science and Technology, 39(7), 2101–2106.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93(2), 671–698.

    Article  CAS  Google Scholar 

  • Lester, Y., Gozlan, I., Avisar, D., & Mamane, H. (2008). Photodegradation of sulphadimethoxine in water by medium pressure UV lamp. Water Science and Technology, 58(5), 1147–1154.

    Article  CAS  Google Scholar 

  • Mella, M., Fasani, E., & Albini, A. (2001). Photochemistry of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid (ciprofloxacin) in aqueous solutions. Helvetica Chimica Acta, 84(9), 2508–2519.

    Article  CAS  Google Scholar 

  • Mezcua, M., Gomez, M. J., Ferrer, I., Aguera, A., Hernando, M. D., & Fernandez-Alba, A. R. (2004). Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Analytica Chimica Acta, 524(1–2), 241–247.

    Article  CAS  Google Scholar 

  • Pereira, V. J., Linden, K. G., & Weinberg, H. S. (2007). Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Research, 41(19), 4413–4423.

    Article  CAS  Google Scholar 

  • Sacher, F., Lang, F. T., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters—analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography A, 938(1–2), 199–210.

    Article  CAS  Google Scholar 

  • Shemer, H., Sharpless, C. M., & Linden, K. G. (2005). Photodegradation of 3,5,6-trichloro-2-pyridinol in aqueous solution. Water, Air, and Soil Pollution, 168(1–4), 145–155.

    Article  CAS  Google Scholar 

  • Sortino, S., De Guidi, G., Giuffrida, S., Monti, S., & Velardita, A. (1998). pH effects on the spectroscopic and photochemical behavior of Enoxacin: a steady-state and time-resolved study. Photochemistry and Photobiology, 67(2), 167–173.

    Article  CAS  Google Scholar 

  • Stefan, M. I., & Bolton, J. R. (2002). UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study. Helvetica Chimica Acta, 85(5), 1416–1426.

    Article  CAS  Google Scholar 

  • Wong-Wah-Chung, P., Rafqah, S., Voyard, G., & Sarakha, M. (2007). Photochemical behaviour of triclosan in aqueous solutions: kinetic and analytical studies. Journal of Photochemistry and Photobiology A-Chemistry, 191(2–3), 201–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Yair Lakretz for his essential comments. This study was funded by the Israeli Water Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Avisar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, Y., Mamane, H. & Avisar, D. Enhanced Removal of Micropollutants from Groundwater, Using pH Modification Coupled with Photolysis. Water Air Soil Pollut 223, 1639–1647 (2012). https://doi.org/10.1007/s11270-011-0971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0971-x

Keywords

Navigation