Skip to main content
Log in

Relative Value of Phosphate Compounds in Reducing the Bioavailability and Toxicity of Lead in Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Lead forms stable compounds with phosphate and the immobilized Pb becomes less available to soil biota. In this study, we tested the bioavailabilty of Pb using earthworms (Eisenia fetida) and plants after immobilization of Pb by a soluble P compound and an insoluble rock phosphate compound in the presence of phosphate-solubilizing bacteria (Enterobacter sp.). Rock phosphate in the presence of phosphate-solubilizing bacteria and a soluble P compound enhanced Pb immobilization as measured by NH4NO3-extractable Pb concentration, thereby reduced its bioavailability as evaluated by earthworm Pb loading and sunflower (Helianthus annuus) Pb uptake under greenhouse conditions. However, soluble P treatment increased the concentration of Pb in soil solution thereby inhibited the root elongation of mustard (Brassica hirta) seedlings. Sunflower plants in the Pb-spiked soil without P amendments showed symptoms of necrosis and stunting because of Pb toxicity. Both soluble and insoluble P treatments significantly increased shoot and root weight and decreased Pb concentration in shoot by more than 50% compared to the control. However, high Pb concentration in soil solution was found in soluble P treatment, which can be attributed to dissolved organic carbon–Pb complex formation, thereby increasing Pb mobility. The inoculation of phosphate-solubilizing bacteria can facilitate phytostabilization of Pb-contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arduini, I., Godbold, D. L., & Onnis, A. (1994). Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol Plant, 92, 675–680.

  • Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 73–82.

    Article  CAS  Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33, 522–531.

    Article  CAS  Google Scholar 

  • Caille, N., Vauleon, C., Leyval, C., & Morel, J. (2005). Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium. Science of the Total Environment, 341, 227–239.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2002). Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science & Technology, 36, 5296–5304.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Casida, L. E. J., Klein, D., & Thomas, S. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.

    Article  CAS  Google Scholar 

  • Chen, S., Chen, L., Ma, Y., & Huang, Y. (2009). Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils? Journal of Environmental Sciences, 21, 360–365.

    Article  CAS  Google Scholar 

  • Conor, R. (1980). Lead. In R. Conor (Ed.), Metal contamination of food (pp. 85–104). London: Applied Science Publishers Ltd.

    Google Scholar 

  • Davies, N. A., Hodson, M. E., & Black, S. (2003). Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environmental Pollution, 121, 49–54.

    Article  CAS  Google Scholar 

  • Di Salvatore, M., Carafa, A. M., & Carratù, G. (2008). Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere, 73, 1461–1464.

    Article  Google Scholar 

  • US Environmental Protection Agency (1996). Ecological effects test guidelines OPPTS 850.4225 Seedling emergence, Tier II. EPA712-C-96-363, 1–7.

  • Ernst, W. H. O., & Nelissen, H. J. M. (2000). Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution, 107, 329–338.

    Article  CAS  Google Scholar 

  • Friesl, W., Lombi, E., Horak, O., & Wenzel, W. W. (2003). Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science., 166, 191–196.

    Article  CAS  Google Scholar 

  • Giesler, R., Andersson, T., Lovgren, L., & Persson, P. (2005). Phosphate sorption in aluminum- and iron-rich humus soils. Soil Science Society of America Journal, 69, 77–86.

    CAS  Google Scholar 

  • Grant, I. F., & Tingle, C. C. D. (2002). Ecological monitoring methods for the assessment of pesticide impact in the tropics. Wageningen: CTA.

    Google Scholar 

  • He, K., Wang, S., & Zhang, J. (2009). Blood lead levels of children and its trend in China. Science of the Total Environment, 407, 3986–3993.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2002). In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. Journal of Environmental Quality, 31, 564–572.

    Article  CAS  Google Scholar 

  • Islam, E., Yang, X., Li, T., Liu, D., Jin, X., & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 147, 806–816.

    Article  CAS  Google Scholar 

  • Johnson, F. M. (1998). The genetic effects of environmental lead. Mutation Research, Reviews in Mutation Research, 410, 123–140.

    Article  CAS  Google Scholar 

  • Ko, H. J., Kim, K. Y., Kim, H. T., Kim, C. N., & Umeda, M. (2008). Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management, 28, 813–820.

    Article  CAS  Google Scholar 

  • Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126, 5–19.

    Article  Google Scholar 

  • Lin, C., Liu, J., Liu, L., Zhu, T., Sheng, L., & Wang, D. (2009). Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 65, 410–416.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1999). Aqueous Pb reduction in Pb-contaminated soils by Florida phosphate rocks. Water, Air, and Soil Pollution, 110, 1–16.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65–84.

    Article  CAS  Google Scholar 

  • Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Science of the Total Environment, 326, 209–215.

    Article  CAS  Google Scholar 

  • Miller, W. P., & Miller, D. M. (1987). A micro pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis, 18, 1–15.

    Article  CAS  Google Scholar 

  • Nahmani, J., Hodson, M. E., & Black, S. (2007). Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environmental Pollution, 149, 44–58.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3—chemical methods (pp. 961–1110). Madison: Soil Science Society of America Inc.

    Google Scholar 

  • Ownby, D. R., Galvan, K. A., & Lydy, M. J. (2005). Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Environmental Pollution, 136, 315–321.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2010). Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Bioresource Technology, 101, 5667–5676.

    Article  CAS  Google Scholar 

  • Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011a). Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Science of the Total Environment, 409, 853–860.

    Article  CAS  Google Scholar 

  • Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011b). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185, 829–836.

    Article  CAS  Google Scholar 

  • Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011c). Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). Journal of Environmental Management, 92, 1115–1120.

    Article  CAS  Google Scholar 

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.

    Article  CAS  Google Scholar 

  • Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.

    Article  CAS  Google Scholar 

  • Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  • Si, J., Tian, B., & Wang, H. (2006). Effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn in soil. Journal of Environmental Sciences, 18, 1119–1123.

    Article  CAS  Google Scholar 

  • Singh, J., & Singh, D. K. (2005). Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere, 60, 32–42.

    Article  CAS  Google Scholar 

  • Suthar, S., Singh, S., & Dhawan, S. (2008). Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category? Ecological Engineering, 32, 99–107.

    Article  Google Scholar 

  • Tarradellas, J., Bitton, G., & Rossel, D. (1997). Soil ecotoxicology. Boca Raton: CRC.

    Google Scholar 

  • Turpeinen, R., Salminen, J., & Kairesalo, T. (2000). Mobility and bioavailability of lead in contaminated boreal forest soil. Environmental Science & Technology, 34, 5152–5156.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., & Mohamed, H. M. (2009). Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere, 76, 893–899.

    Article  CAS  Google Scholar 

  • Valerio, M. E., García, J. F., & Peinado, F. M. (2007). Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Science of the Total Environment, 378, 63–66.

    Article  CAS  Google Scholar 

  • Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44, 1711–1721.

    Article  CAS  Google Scholar 

  • Weltje, L. (1998). Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere, 36, 2643–2660.

    Article  CAS  Google Scholar 

  • Wong, M. H., & Lau, W. M. (1985). The effects of applications of phosphate, lime, EDTA, refuse compost and pig manure on the Pb contents of crops. Agricultural Wastes, 12, 61–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was sponsored by Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia in collaboration with the University of South Australia. The authors thank Dr. Mohammad Rahman for technical assistance with the ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hee Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Bolan, N., Megharaj, M. et al. Relative Value of Phosphate Compounds in Reducing the Bioavailability and Toxicity of Lead in Contaminated Soils. Water Air Soil Pollut 223, 599–608 (2012). https://doi.org/10.1007/s11270-011-0885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0885-7

Keywords

Navigation