Skip to main content

Advertisement

Log in

Use of Gisenyi Volcanic Rock for Adsorptive Removal of Cd(II), Cu(II), Pb(II), and Zn(II) from Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Volcanic rock is a potential adsorbent for metallic ions from wastewater. This study determined the capacity of Gisenyi volcanic rock found in Northern Rwanda to adsorb Cd, Cu, Pb and Zn using laboratory scale batch experiments under a variety of experimental conditions (initial metal concentration varied from 1 to 50 mg/L, adsorbent dosage 4 g/L, solid/liquid ratio of 1:250, contact time 120 h, particle size 250–900 μm). The adsorbent had a surface area of 3 m2/g. The adsorption process was optimal at near-neutral pH 6. The maximal adsorption capacity was 6.23, 10.87, 9.52 and 4.46 mg/g for Cd, Cu, Pb and Zn, respectively. The adsorption process proceeded via a fast initial metal uptake during the first 6 h, followed by slow uptake and equilibrium after 24 h. Data fitted well the pseudo second-order kinetic model. Equilibrium experiments showed that the adsorbent has a high affinity for Cu and Pb followed by Cd and Zn. Furthermore, the rock is a stable sorbent that can be reused in multiple sorption–desorption–regeneration cycles. Therefore, the Gisenyi volcanic rock was found to be a promising adsorbent for heavy metal removal from industrial wastewater contaminated with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmet, S., Mustafa, T., & Mustafa, S. (2007). Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144, 41–46.

    Article  Google Scholar 

  • Ahuja, P., Gupta, R., & Saxena, R. X. (1999). Sorption and desorption of cobalt by Oscilatoria anguistissima. Current Microbiology, 39, 49–52.

    Article  CAS  Google Scholar 

  • Alemayehu, E., & Lennartz, B. (2009). Virgin volcanic rocks: kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169, 395–401.

    Article  CAS  Google Scholar 

  • Allen, S. J., McKay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interfarce Science, 280, 322–333.

    Article  CAS  Google Scholar 

  • Appel, C., Ma, L. Q., Rhue, R. D., & Kennelley, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113, 77–93.

    Article  CAS  Google Scholar 

  • Applegate, L. E. (1984). Membrane separation processes. Chemical Engineering., 91, 64–89.

    CAS  Google Scholar 

  • Atdor, I., Fourest, E., & Volesky, B. (1995). Desorption of cadmium from algal biosorbent. Canadian Journal of Chemical Engineering, 73, 516–522.

    Article  Google Scholar 

  • Aziz, H. A., Adlan, M. N., & Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post-treatment by high quality limestone. Bioresource Technology, 99(6), 1578–1583.

    Article  CAS  Google Scholar 

  • Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., & Veglio, F. (2003). Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy, 70, 101–112.

    Article  CAS  Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, part I. Physical and mineralogical methods (2nd ed., pp. 363–375). Madison: American Society of Agronomy, (Agronomy Monograph, 9).

    Google Scholar 

  • Bosso, S. T., & Enzweiler, J. (2002). Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Research, 36(19), 4795–4800.

    Article  CAS  Google Scholar 

  • Buamah, R., Petruseveski, B., & Schippers, J. C. (2008). Adsorptive removal of manganese(II) from the aqueous phase using iron oxide coated sand. Journal of Water Supply. Research and Technology, 57, 1–11.

    Article  CAS  Google Scholar 

  • Chantawong, V., Harvey, N. W., & Bashkin, V. N. (2003). Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water, Air, and Soil Pollution, 148, 111–125.

    Article  CAS  Google Scholar 

  • Cheng, J., Bergamann, B. A., Classen, J. J., Stomp, A. M., & Howard, J. W. (2002). Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 81, 81–85.

    Article  CAS  Google Scholar 

  • Davis, J. A. (1982). Adsorption of natural dissolved organic matter at the oxide/water interface. Geochimica et Cosmochimica Acta, 46, 2381–2393.

    Article  CAS  Google Scholar 

  • Daza, L., Mendioroz, S., & Mendioroz, J. A. (1991). Mercury adsorption by sulfurized fibrous silicates. Clays Clay Minerals, 39, 14–21.

    Article  CAS  Google Scholar 

  • De Faria, L. A., Prestat, M., Koenig, J. F., Chartier, P., & Trasatti, S. (1998). Surface properties of Ni + Co mixed oxides: a study by X-rays, XPS, BET and PZC. Electrochimica Acta, 44, 1481–1489.

    Article  Google Scholar 

  • Demiral, H., Demiral, I., Tumsek, F., & Karabacakoglu, B. (2008). Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 144(2), 188–196.

    Article  CAS  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314.

    Article  CAS  Google Scholar 

  • Essington, M. E. (2004). Soil and water chemistry: an integrative approach. Washington: CRC.

    Google Scholar 

  • Faust, S. D., & Aly, O. M. (1998). Chemistry of water treatment (2nd ed.). USA: CRC Press LLC.

    Google Scholar 

  • Geselbarcht, J. (1996). Micro filtration/reverse osmosis pilot trials for Livermore, California, Advanced water reclamation. In: Water Reuse Conference Proceedings, WWA 187

  • Gong, R., Ding, Y., Lui, H., Chem, Q., & Liu, Z. (2005). Lead biosorption and desorption by intact and pretreated spirula maxima biomass. Chemosphere, 58, 125–130.

    Article  CAS  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1992). Adsorption, surface area and porosity (2nd ed.). London: Academic.

    Google Scholar 

  • Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M. L., & Munoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84, 419–426.

    Article  CAS  Google Scholar 

  • Hashim, M. A., Tan, H. N., & Chu, K. H. (2000). Immobilized marine algal biomass for multiple cycles of copper adsorption and desorption. Separation and Purification Technology, 19, 39–42.

    Article  CAS  Google Scholar 

  • Ho, Y.S. (1995). Adsorption of heavy metals from waste streams by natural materials. PhD Thesis. The University of Birmingham, UK

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3), 735–742.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Ofomaja, A. E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials, B129, 137–142.

    Article  Google Scholar 

  • Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29, 1327–1332.

    Article  CAS  Google Scholar 

  • Hong, P. K. A., Li, Ch, Banerjiand, S. K., & Regmi, T. (1999). Extraction, recovery and biostability of EDTA for remediation of heavy metal contaminated soil. Journal of Soil Contamination, 8, 81–103.

    Article  CAS  Google Scholar 

  • ISO 9277 (2010). Determination of the specific surface area of solids by gas adsorption–BET method.

  • Jenne, E. A. (1998). Adsorption of metals by geomedia. Variables, mechanisms, and model applications. California: Academic.

    Google Scholar 

  • Katsou, E., & Tzanoudaki, M. (2010). Regeneration of natural zeolite polluted by lead and zinc in wastewater treatment systems. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2010.12.061.

  • Khandaker, M., & Hossaim, A. (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, 34, 283–291.

    Article  Google Scholar 

  • Kocaoba, S. (2009). Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite. Desalination, 244, 24–30.

    Article  CAS  Google Scholar 

  • Kwon, J. S., Yun, S. T., Kim, S. O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn (II) in aqueous solution by scoria. Chemosphere, 60(10), 1416–1426.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of solution substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, Band, 24(4), 1–39.

    Google Scholar 

  • Lai, C. H., Chen, C. Y., Wei, B. L., & Yeh, S. H. (2002). Cadmium adsorption on goethite coated sand in the presence of humic acid. Water Research, 36(20), 4943–4950.

    Article  CAS  Google Scholar 

  • Martell, A. E., & Hancock, R. D. (1996). In J. P. Fackler Jr. (Ed.), Metal complexes in aqueous solutions. New York: Plenum.

    Google Scholar 

  • Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., & Munoz, J. A. (2010). Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials, 178, 243–248.

    Article  CAS  Google Scholar 

  • McKay, G., Otterburn, M. S., & Sweeney, A. G. (1980). Kinetics of colour removal from effluent using activated carbon. Journal of the Society of Dyers and Colourists, 96, 576–579.

    Article  CAS  Google Scholar 

  • Mohan, D., & Singh, K. P. (2002). Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 36, 2304–2318.

    Article  CAS  Google Scholar 

  • Morera, M. T., Echeverria, J. C., Mazkiaran, C., & Garrido, J. J. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113, 135–144.

    Article  CAS  Google Scholar 

  • Murari, P., Huan-yan, X., & Sona, S. (2008). Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Journal of Hazardous Materials, 154, 221–229.

    Article  Google Scholar 

  • Nourbakhsh, M., Sag, Y., Ozer, D., Aksu, Z., Katsal, T., & Calgar, A. (1994). Comparative study of various biosorbents for removal of chromium (VI) ions from industrial wastewater. Process Biochemistry, 29, 1–5.

    Article  CAS  Google Scholar 

  • Panuccio, M. R., Crea, F., Sorgona, A., & Cacco, G. (2008). Adsorption of nutrients and cadmium by different minerals: experimental studies and modelling. Journal of Environmental Management, 88(4), 890–898.

    Article  CAS  Google Scholar 

  • Pehlivan, E., Müjdat, O. A., Dinc, S., & Parlayici, S. E. (2009). Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials, 167, 1044–1049.

    Article  CAS  Google Scholar 

  • Peric, J., Trgo, M., & Medvidovic, N. V. (2004). Removal of zinc, copper, and lead by natural zeolite: a comparison of adsorption isotherms. Water Research, 38(7), 1893–1899.

    Article  CAS  Google Scholar 

  • Petalas, C., Lambrakis, N., & Zaggana, E. (2006). Hydrochemistry of waters of volcanic rocks: the case of the volcano sedimentary rocks of Thrace, Greece. Water, Air, and Soil Pollution, 169, 375–394.

    Article  CAS  Google Scholar 

  • Prasad, M., Xu, H. Y., & Saxena, S. (2008). Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Journal of Hazardous Materials, 154, 221–229.

    Article  CAS  Google Scholar 

  • Ruhlmanna, J., Korschensb, T. M., & Graefe, J. (2006). A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma, 130, 272–283.

    Article  Google Scholar 

  • Sari, A., Tuzen, M., & Soylak, M. (2007). Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144, 41–46.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (1997). Phytoremediation, technology evaluation report TE-97-01. Pittsburgh: Ground-Water Remediation Technologies Analysis Center.

    Google Scholar 

  • Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N., & Vairamani, M. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials, 108, 111–117.

    Article  CAS  Google Scholar 

  • Sengupta, A. K., & Clifford, D. (1986). Important process variables in chromate ion exchange. Environmental Science and Technology, 20, 149–155.

    Article  CAS  Google Scholar 

  • Sharma, S.K. (2002). Adsorptive Iron Removal from Groundwater. PhD Thesis. UNESCO-IHE Institute for Water Education and Wageningen University. Swets and Zeitlinger B.V., Lisse, The Netherlands.

  • Sharma, S. K., Greetham, M. R., & Schippers, J. C. (1999). Adsorption of iron(II) onto filter media. Journal of Water Supply: Research and Technology-Aqua, 48(3), 84–91.

    CAS  Google Scholar 

  • Slejko, F. L. (1985). Adsorption technology—a step-by-step approach to process evaluation and application. In F. L. Slejko (Ed.), Chemical industries series vol. 19 (pp. 18–30). Voorhees: Tall Oaks Publishing Inc.

    Google Scholar 

  • Suh, C. E., Luhr, J. F., & Njome, M. S. (2008). Olivine-hosted glass inclusions from Scoriae erupted in 1954–2000 at Mount Cameroon volcano, West Africa. Journal of Volcanology and Geothermal Research, 169(1–2), 1–33.

    Article  CAS  Google Scholar 

  • Trivedi, P., & Axe, L. (2001). Predicting divalent metal sorption to hydrous Al, Fe and Mn oxides. Environmental Science and Technology, 35(9), 1779–1784.

    Article  CAS  Google Scholar 

  • Tsezos, M. (2001). Biosorption of metals. The experience accumulated and the outlook for technology development. Hydrometallurgy, 59, 241–243.

    Article  CAS  Google Scholar 

  • Ulmanu, M., Maranon, E., Fernandez, Y., Castrillon, L., Anger, I., & Dumitriu, D. (2003). Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, and Soil Pollution, 142, 357–373.

    Article  CAS  Google Scholar 

  • Van Vliet, B. M., & Weber, W. J., Jr. (1981). Comparative performance of synthetic adsorbents and activated carbon for specific compound removal from wastewaters. Journal of the Water Pollution Control Federation., 53(11), 1585–1598.

    Google Scholar 

  • Yang, R. T. (1999). Gas separation by adsorption processes—series on chemical engineering, vol. 1. London: Imperial College Press.

    Google Scholar 

  • Zhou, J. L., Huang, P. L., & Lin, R. G. (1998). Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environmental Pollution, 101, 67–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dutch Government and the National University of Rwanda for the financial support provided for this research through the NPT/RW/051 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik P. L. Rousseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekomo, C.B., Rousseau, D.P.L. & Lens, P.N.L. Use of Gisenyi Volcanic Rock for Adsorptive Removal of Cd(II), Cu(II), Pb(II), and Zn(II) from Wastewater. Water Air Soil Pollut 223, 533–547 (2012). https://doi.org/10.1007/s11270-011-0880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0880-z

Keywords

Navigation