Skip to main content
Log in

Impacts of Corbicula fluminea on Oxygen Uptake and Nutrient Fluxes across the Sediment–Water Interface

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Corbicula fluminea (Asian clam) can assemble in high densities and dominate benthic communities. To evaluate the influence of this clam on sediment oxygen uptake and nutrient fluxes across the sediment–water interface, a microcosm study was conducted using a continuous-flow cultivation system with sediment, lake water, and C. fluminea specimens from Taihu Lake, China. C. fluminea destroyed the initial sediment surface, enhanced O2 penetration into the sediment partially, and increased the sediment water content, the volume of oxic sediment, and total microbial activity. Sediment O2 uptake was significantly stimulated by C. fluminea. Linear regression results for O2 uptake versus clam biomass ranged from 21.9 to 9.47 μmol h−1 g−1 DW (dry weight). The release of soluble reactive phosphorus, ammonium, and nitrate from the sediment was also increased by the clams. The increase in the amount of soluble reactive phosphorus and ammonium released into the overlying water was 0.042 ~ 0.091 and 2.77 ~ 3.03 μmol h−1 g−1 DW, respectively, and this increase was attributed to increased diffusion, enhanced advection between the pore water and the overlying water, and the excretions from C. fluminea. Enhanced nitrification was suggested as the reason for the increase in nitrate release (2.95 ~ 4.13 μmol h−1 g−1 DW) to the overlying water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943–951.

    Article  CAS  Google Scholar 

  • Aller, R. C. (2001). Transport and reactions in the bioirrigated zone. In B. P. Boudreau & B. B. Jørgensen (Eds.), The benthic boundary layer: Transport processes and biogeochemistry (pp. 269–301). New York: Oxford University Press.

    Google Scholar 

  • Andersen, F. Ø., Jørgensen, M., & Jensen, H. S. (2006). The influence of Chironomus plumosus larvae on nutrient fluxes and phosphorus fractions in aluminum treated lake sediment. Water, Air, & Soil Pollution: Focus, 6, 101–110.

    Article  Google Scholar 

  • Andersson, G., Granéli, W., & Stenson, J. (1988). The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia, 170, 267–284.

    Article  CAS  Google Scholar 

  • Boltovskoy, D., Izaguirre, I., & Correa, N. (1995). Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia, 312, 171–182.

    Article  Google Scholar 

  • Chen, Z., Liu, J., Xu, S., Wang, D., & Zheng, X. (2005). Impact of macrofaunal activities on the DIN exchange at the sediment–water interface along the tidal flat of Yangtze River Estuary. Environmental Science, 26(5), 43–50 (in Chinese with English abstract).

    Google Scholar 

  • Cherry, D. L., Roy, R. L., Lechleitner, R. A., Dunhardt, P. A., Peters, G. T., & Cairns, J. (1986). Corbicula fouling and control measures at the Celco Plant, Virginia. American Malacological Bulletin, Special Edition No. 2, 69-81.

  • Chinese SEPA (2002). Methods for the examination of water and wastewater (4th ed). Beijing: China Environmental Science Press. (in Chinese).

  • Dame, R. F. (1996). Ecology of Marine Bivalves: an Ecosystem Approach. New York: CRC Press.

    Book  Google Scholar 

  • Glud, R. N. (2008). Oxygen dynamics of marine sediments. Marine Biology Research, 4, 243–289.

    Article  Google Scholar 

  • Hakenkamp, C. C., & Palmer, M. A. (1999). Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia, 119, 445–451.

    Article  Google Scholar 

  • Hakenkamp, C. C., Ribblett, S. G., Palmer, M. A., Swan, C. M., Reid, J. W., & Goodison, M. R. (2001). The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshwater Biology, 46, 491–501.

    Article  Google Scholar 

  • Hansen, K., King, G. M., & Kristensen, E. (1996). Impact of the soft-shell clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquatic Microbial Ecology, 10, 181–194.

    Article  Google Scholar 

  • Henriksen, K., Rasmussen, M. B., & Jensen, A. (1983). Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlaying water. Ecological Bulletins, 35, 193–205.

    CAS  Google Scholar 

  • Karatayev, A. Y., Padilla, D. K., Minchin, D., Boltovskoy, D., & Burlakova, L. E. (2007). Changes in global economies and trade: The potential spread of exotic freshwater bivalves. Biological Invasions, 9, 161–180.

    Article  Google Scholar 

  • Karlson, K., Hulth, S., Ringdahl, K., & Rosenberg, R. (2005). Experimental recolonisation of Baltic Sea reduced sediments: Survival of benthic macrofauna and effects on nutrient cycling. Marine Ecology Progress Series, 294, 35–49.

    Article  CAS  Google Scholar 

  • Kristensen, E. (2000). Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia, 426, 1–24.

    Article  CAS  Google Scholar 

  • Lauritsen, D. D., & Mozley, S. C. (1989). Nutrient excretion by the Asiatic clam Corbicula fluminea. Journal of North American Benthological Society, 8, 134–139.

    Article  Google Scholar 

  • Leff, G. L., & Leff, A. A. (2000). The effect of macroinvertebrates on bacterial distributions in freshwater microcosms. Archiv für Hydrobiologie, 147, 225–240.

    Google Scholar 

  • Lewandowski, J., & Hupfer, M. (2005). Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: a laboratory study. Limnology and Oceanography, 50, 1106–1118.

    Article  CAS  Google Scholar 

  • Liu, Q., Shen, H., Zhou, H., & Lu, W. (1999). Oxygen consumption and ammonia excretory rate of the freshwater clam, Corbicula fluminea. Journal of Shanghai Fisheries University, 8, 298–303 (in Chinese with English abstract).

    Google Scholar 

  • Magni, P., Montani, S., Takada, C., & Tsutsumi, H. (2000). Temporal scaling and relevance of bivalve nutrient excretion on a tidal flat of the Seto Inland Sea, Japan. Marine Ecology Progress Series, 198, 139–155.

    Article  Google Scholar 

  • Matisoff, G., Fisher, J. B., & Matis, S. (1985). Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia, 122, 19–33.

    Article  CAS  Google Scholar 

  • McCall, P. L., Tevesz, M. J. S., & Schwelgien, S. F. (1979). Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from western Lake Erie. Journal of Great Lakes Research, 5, 105–111.

    Article  Google Scholar 

  • McCall, P. L., Tevesz, M. J. S., Wang, X., & Jackson, J. R. (1995). Particle mixing rates of freshwater bivalves: Anodonta grandis (Unionidae) and Sphaerium striatinum (Pisidiidae). Journal of Great Lakes Research, 21, 333–339.

    Article  Google Scholar 

  • Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K., & Mauclaire, L. (2004). Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology, 36, 271–284.

    Article  Google Scholar 

  • Meysman, F. J. R., Middelburg, J. J., & Heip, C. H. R. (2006). Bioturbation: A fresh look at Darwin’s last idea. Trends in Ecology & Evolution, 21, 688–695.

    Article  Google Scholar 

  • Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., & Stora, G. (2005). The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology, 326, 77–88.

    Article  CAS  Google Scholar 

  • Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., & Stora, G. (2006). The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. Journal of Experimental Marine Biology and Ecology, 337, 178–189.

    Article  CAS  Google Scholar 

  • Mortimer, R. J. G., Davey, J. T., Krom, M. D., Watson, P. G., Frickers, P. E., & Clifton, R. J. (1999). The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 48, 683–699.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Murray, J. M. H., Meadows, A., & Meadows, P. S. (2002). Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology, 47, 15–30.

    Article  Google Scholar 

  • Ortmann, C., & Grieshaber, M. K. (2003). Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. The Journal of Experimental Biology, 206, 4167–4178.

    Article  CAS  Google Scholar 

  • Qin, B. (2008). Preface. In: Lake Taihu, China—Dynamics and environmental Change. Monographiae Biologicae, 87, 1–2.

    Google Scholar 

  • Reid, R. G. B., McMahon, R. F., Foighil, D. O., & Finnigan, R. (1992). Anterior inhalant currents and pedal feeding in bivalves. The Veliger, 35, 93–104.

    Google Scholar 

  • Saloom, M. E., & Duncan, R. S. (2005). Low dissolved oxygen levels reduce anti-predation behaviours of the freshwater clam Corbicula fluminea. Freshwater Biology, 50, 1233–1238.

    Article  Google Scholar 

  • Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., & Kölling, M. (2005). Rhizon sampling of porewaters near the sediment–water interface of aquatic systems. Limnology and Oceanography: Methods, 3, 361–371.

    Article  Google Scholar 

  • Spooner, D. E., & Vaughn, C. C. (2006). Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology, 51, 1016–1024.

    Article  CAS  Google Scholar 

  • Stockdale, A., Davision, W., & Zhang, H. (2009). Micro-scale biogeochemical heterogeneity in sediments: A review of available technology and observed evidence. Earth Science Reviews, 92, 81–97.

    Article  CAS  Google Scholar 

  • Stookey, L. L. (1970). Ferrozine: A new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779–781.

    Article  CAS  Google Scholar 

  • Tran, D., Boudou, A., & Massabuau, J.-C. (2000). Mechanism for maintaining oxygen consumption under varying oxygenation levels in the freshwater clam Corbicula fluminea. Canadian Journal of Zoology, 78, 2027–2036.

    Google Scholar 

  • U.S. EPA (2007). Standard operating procedure for dissolved oxygen micro method, Winkler titration. 1–12.

  • Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.

    Article  Google Scholar 

  • Vaughn, C. C., & Hakenkamp, C. C. (2001). The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology, 46, 1431–1446.

    Article  Google Scholar 

  • Welsh, D. T. (2003). It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chemistry and Ecology, 19, 321–342.

    Article  CAS  Google Scholar 

  • Welsh, D. T., & Castadelli, G. (2004). Bacterial nitrification activity directly associated with isolated benthic marine animals. Marine Biology, 144, 1029–1037.

    Article  CAS  Google Scholar 

  • Wittmann, M., Reuter, J., Schladow, G., Hackley, S., Allen, B., Chandra, S., et al. (2008). Asian clam (Corbicula fluminea) of Lake Tahoe: Preliminary scientific findings in support of a management. http://169.237.166.248/research/AsianClam2009.pdf. Accessed 18 June 2009.

  • Yu, J., Liu, M., Hou, L., Liu, Q., & OU, D. (2004). Effect of caving macrobenthos on nitrogen cycling in tidal flat. Marine Environmental Science, 23(2), 1–4 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, L. (2010). Changes of sediment–water interface properties and phosphorus dynamics under bioturbation in lake. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. (Dissertation, in Chinese with English abstract).

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 40730528, 40971253) and the Fundamental Research Program of Jiangsu Province, China (No. SBE201078397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxin Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Shen, Q., Hu, H. et al. Impacts of Corbicula fluminea on Oxygen Uptake and Nutrient Fluxes across the Sediment–Water Interface. Water Air Soil Pollut 220, 399–411 (2011). https://doi.org/10.1007/s11270-011-0763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0763-3

Keywords

Navigation