Skip to main content
Log in

Just Add Water and Salt: the Optimisation of Petrogenic Hydrocarbon Biodegradation in Soils from Semi-arid Barrow Island, Western Australia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Awadhi, N., Williamson, K. J., & Isok, J. D. (1993). Remediation of Kuwait's oil-contaminated soils. In P. T. Kostecki & E. J. Calabrese (Eds.), Hydrocarbon contaminated soils and ground water, vol. 3 (pp. 9–21). London: Lewis.

    Google Scholar 

  • Al-Awadhi, N., Balba, M. T., Puskas, K., AI-Daher, R., Tsuji, H., Chino, H., et al. (1995). Remediation and rehabilitation of oil contaminated lake beds. Journal of Arid Land Studies, 5S, 195–198.

    Google Scholar 

  • Al-Awadhi, N., Al-Daher, R., EI-Nawawy, A., & Balba, M. T. (1996). Bioremediation of oil contaminated soil in Kuwait I—landfarming to remediate oil-contaminated soil. Journal of Soil Contamination, 5, 243–260.

    CAS  Google Scholar 

  • Al-Daher, R., Al-Awadhi, N., & EI-Nawawy, A. (1998). Bioremediation of damaged desert environment using the windrow soil pile system in Kuwait. Environment International, 24, 175–180.

    Article  CAS  Google Scholar 

  • Al-Daher, R., Balba, M. T., Al-Awadhi, N., Yateem, A., Al-Surrayai, T., & Al-Mansour, H. (2008). Innovative technologies for bio-remediation of oil-contaminated soil in Kuwait. Journal of Biotechnology, 136, S681.

    Article  Google Scholar 

  • Alexander, M. (1999). Bioremediation technologies. In M. Alexander (Ed.), A biodegradation and bioremediation (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews, 45, 180–209.

    CAS  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1993). Microbial ecology: Fundamentals and applications (3rd ed.). Sydney: The Benjamin/Cummings.

    Google Scholar 

  • Balba, M. T., AI-Daher, R., Al-Awadhi, N., Chino, H., & Tsuji, H. (1998). Bioremediation of oil-contaminated desert soil: The Kuwaiti experience. Environmental International, 24, 163–173.

    Article  CAS  Google Scholar 

  • Baptista, S. J., Cammorata, M. C., & Freire, D. D. C. (2005). Production of CO2 in crude oil bioremediation in clay soil. Brazilian Archives of Biology and Technology, 48, 249–255.

    Google Scholar 

  • Blakemore, L. C., Searle, P. L., Daly, B. K. (1987). Methods for chemical analysis of soils. NZ Soil Bur. Sci. Rep. 80. DSIR, Lower Hutt, 103 pp.

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.

    Article  CAS  Google Scholar 

  • Bossert, I., & Bartha, R. (1984). The fate of petroleum in soil ecosystems. In R. M. Atlas (Ed.), Petroleum microbiology (pp. 434–476). New York: Macmillan.

    Google Scholar 

  • Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: Implications for nutrient-amended bioremediation. Environmental Science & Technology, 31, 2078–2084.

    Article  CAS  Google Scholar 

  • Braddock, J. F., Walworth, J. L., & McCarthy, K. A. (1999). Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized Arctic soils. Bioremediation Journal, 3, 105–116.

    Article  CAS  Google Scholar 

  • Bragg, J. R., Prince, R. C., Harner, E. J., & Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368, 413–418.

    Article  CAS  Google Scholar 

  • Carberry, J. B., & Wik, J. (2001). Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances & Environmental Engineering, 36, 1491–1503.

    CAS  Google Scholar 

  • Carter, D. O., & Tibbett, M. (2008). Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition? Applied Soil Ecology, 40, 529–535.

    Article  Google Scholar 

  • Carter, D. O., Yellowlees, D. Y., & Tibbett, M. (2010). Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Science International, 200, 60–66. doi:10.1016/j.forsciint.2010.03.031.

    Article  Google Scholar 

  • Clegg, M. D., Sullivan, C. Y., & Eastin, J. D. (1978). A sensitive technique for the rapid measurement of carbon dioxide concentrations. Plant Physiology, 62, 924–926.

    Article  CAS  Google Scholar 

  • Cole, G. M. (1994). Assessment and remediation of petroleum contaminated sites. Boca Raton: CRC.

    Google Scholar 

  • Colwell, J. D. (1963). The estimate of phosphorus fertilizer requirements of wheat in southern New South Wales by soil analyses. Australian Journal Experimental Agriculture and Animal Husbandry, 3, 190–197.

    Article  CAS  Google Scholar 

  • Coyne, M. (1999). Soil microbiology: An explanatory approach. Melbourne: Delmar.

    Google Scholar 

  • Dibble, J. T., & Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology, 37, 729–739.

    CAS  Google Scholar 

  • Emberger, C., Gaussen, H., Kassas, M., & dePhilippis, A. (1963). Bioclimatic map of the Mediterranean Zone, explanatory notes. Paris: UNESCO-FAO. 58p.

    Google Scholar 

  • Essien, J. P., Itah, A. Y., & Edvok, S. I. (2003). Influence of EC on microorganisms and rate of crude oil mineralization in Niger Delta Ultisol. Global Journal of Pure and Applied Science, 9, 199–204.

    CAS  Google Scholar 

  • Ferguson, S. H., Franzmann, P. D., Revill, A. T., Snape, I., & Rayner, J. L. (2003). The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Region Science and Technology, 37, 197–212.

    Article  Google Scholar 

  • Ferguson, S. H., Woinarski, A. Z., Snape, I., Morris, C. E., & Revill, A. T. (2004). A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Region Science and Technology, 40, 47–60.

    Article  Google Scholar 

  • Forster, J. W. (1962). Hydrocarbons as substrates for microorganisms. Antonie van Leeuwenhock, 28, 241–274.

    Article  Google Scholar 

  • Gogoi, B. K., Dutta, N. N., Goswami, P., & Krishna Mohan, T. R. (2003). A case study of petroleum hydrocarbon contaminated soil at a crude oil spill site. Advances in Environmental Research, 7, 767–782.

    Article  CAS  Google Scholar 

  • Grassia, G. S., McLean, K. M., Glenat, P., Bauld, J., & Sheehy, A. J. (1996). A systematic survey for thermophilic fermentive bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiology Ecology, 21, 47–58.

    Article  CAS  Google Scholar 

  • Greenwood, P. F., Wibrow, S., George, S. J., & Tibbett, M. (2008). Sequential hydrocarbon biodegradation of a soil from arid coastal Australia oil-treated under laboratory controlled conditions. Organic Geochemistry, 39, 1336–1346.

    Article  CAS  Google Scholar 

  • Greenwood, P. F., Wibrow, S., George, S. J., & Tibbett, M. (2009). Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Organic Geochemistry, 40, 293–300.

    Article  CAS  Google Scholar 

  • Huesemann, M. H. (1994). Biodegradation and bioremediation of petroleum pollutants in soil. In A. Singh & O. P. Ward (Eds.), Soil biology: Applied bioremediation and phytoremediation (pp. 13–34). Germany: Springer.

    Google Scholar 

  • Huesemann, M. H., & Moore, K. O. (1993). Compositional changes during landfarming of a weathered Michigan crude oil contaminated soil. Journal Soil Contamination, 2, 245–264.

    CAS  Google Scholar 

  • Jensen, V. (1975). Bacterial flora of soil after application of oily waste. Oikos, 26, 152–158.

    Article  Google Scholar 

  • Jobson, A. M., McLaughlin, M., Cook, F. D., & Westlake, D. W. S. (1974). Effects of amendments on the microbial utilization of oil applied to soil. Applied and Environmental Microbiology, 27, 166–171.

    CAS  Google Scholar 

  • Jorgenson, M. T., Cater, T. C. (1996). Minimizing ecological damage during cleanup of terrestrial and wetland oil spills, Adv. Env. Control Tech. Series, Gulf Publishing, Houston, pp. 257–293.

  • Kim, S., Choi, D. H., Sim, D. S., & Oh, Y. (2005). Evaluation of bioremediation effectiveness on crude contaminated sand. Chemosphere, 59, 845–852.

    Article  CAS  Google Scholar 

  • Kooirevaar, P., Monelik, G., & Dirksen, C. (1983). Elements of soil physics. New York: Elsevier.

    Google Scholar 

  • Lee, K., Levy, E.M. (1987). Enhanced biodegradation of a light crude oil in sandy beaches. In Proceed. oil spill conference. American Petroleum Institute, Washington, DC, pp. 411–416

  • Lee, K., Levy, E.M. (1989). Enhancement of the natural biodegradation of condensate and crude oil on beaches of Atlantic Canada. Proceed. oil spill conference. American Petroleum Institute, Washington, DC, pp. 479–486

  • Martens, R. (1987). Estimation of microbial biomass in soil by a respiration method: importance of soil pH and flushing methods for the measurement of respired CO2. Soil Biology and Biochemistry, 19, 77–81.

    Article  CAS  Google Scholar 

  • Mead, R. N., & Goñi, M. A. (2008). Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter? Geochimica et Cosmochimica Acta, 72, 2673–2686.

    Article  CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Rolston, D. E., & Yamaguchi, T. (1997). Modeling diffusion and reaction in soils: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils. Soil Science, 162, 632–640.

    Article  CAS  Google Scholar 

  • Morgan, P., & Watkinson, R. J. (1990). Assessment of the potential for in situ bio-treatment of hydrocarbon contaminated soils. Water Science and Technology, 22, 63–68.

    CAS  Google Scholar 

  • Orchard, V. A., Cook, F. J., & Corderoy, D. M. (1992). Field and laboratory studies on the relationships between respiration and moisture for two soils of contrasting fertility status. Pedobiologia, 36, 21–33.

    Google Scholar 

  • Papendick, R. I., & Runkles, J. R. (1965). Transient-state oxygen diffusion in soil: I. The case where rate of oxygen consumption is constant. Soil Science, 100, 251–261.

    Article  Google Scholar 

  • Pan, C., Feng, J., Tian, Y., Yu, L., Luo, X., Sheng, G., et al. (2005). Interaction of oil components and clay minerals in reservoir sandstones. Organic Geochemistry, 36, 633–654.

    Article  CAS  Google Scholar 

  • Paul, E. A., & Clark, F. E. (1996). Soil microbiology and biochemistry (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide. UK: Cambridge University Press.

    Google Scholar 

  • Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods, Australian soil and land survey handbook. Australia: Inkata.

    Google Scholar 

  • Raymond, R. L., Hudson, J. O., & Jamiso, V. W. (1976). Oil degradation in soil. Applied and Environmental Microbiology, 31, 522–535.

    CAS  Google Scholar 

  • Riser-Roberts, E. (1992). Remediation of petroleum contaminated soils. In Smoley, C.K. (Ed.). CRC, Boca Raton. 264 p

  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soil: biological, physical, and chemical processes. Boca Raton, FL, USA: CRC Press LLC.

  • Rykerd, R. L., Weaver, R. W., & McInnes, K. J. (1995). Influence of salinity on bioremediation of oil in soil. Environmental Pollution, 90, 127–130.

    Article  Google Scholar 

  • Sharabi, N. E., & Bartha, R. (1993). Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution. Applied and Environmental Microbiology, 59, 1201–1205.

    Google Scholar 

  • Teng, Y., Luo, Y., Ping, L., Zuo, D., Li, Z., & Christie, P. (2010). Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil. Biodegradation, 21, 167–178.

    Article  CAS  Google Scholar 

  • Tibbett, M., & Killham, K. (2000). Biodegradation of light crude oil in arable soils from southern Shetland, UK. In U. K. Shetland, T. W. Riley, & J. M. A. Desbiolles (Eds.), Proceedings of the 4th international conference on soil dynamics (pp. 171–184). Kent Town: Profile Communications.

    Google Scholar 

  • Vaughan, D., & Malcolm, R. E. (1985). Soil organic matter and biological activity. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Verstraete, W. R., Vanlooke, R., deBorger, R., & Verlinde, A. (1975). Modeling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers. In M. Sharpley & A. M. Kaplan (Eds.), Proceed. 3rd Int. Biodeg. Symp (pp. 98–112). London: Applied Science.

    Google Scholar 

  • Volkman, J. K., Alexander, R., Kagi, R. I., Noble, R. A., & Woodhouse, G. W. (1983). A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia. Geochimica et Cosmochimica Acta, 47, 2091–2105.

    Article  CAS  Google Scholar 

  • Walworth, J. L., & Reynolds, C. M. (1995). Bioremediation of a petroleum contaminated cryic soil: Effect of phosphorous, nitrogen and temperature. Journal of Soil Contamination, 4, 299–310.

    CAS  Google Scholar 

  • Walworth, J. L., Woolard, C. R., Braddock, J. F., & Reynolds, C. M. (1997). Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: An approach to determining optimum levels. Journal of Soil Contamination, 6, 465–480.

    CAS  Google Scholar 

  • Weaver, R. W., Angle, J. S., & Bottomley, P. S. (1994). Methods of soil analysis: Part 2 microbiological and biochemical properties. Madison: Soil Science society of America.

    Google Scholar 

  • Wrenn, B. A., Haines, J. R., Venosa, A. D., Kadhodayan, M., & Suidan, M. T. (1994). Effects of nitrogen source on crude oil biodegradation. Journal of Industrial Microbiology, 13, 279–286.

    Article  CAS  Google Scholar 

  • Wright, A. L., Weaver, R. W., & Webb, J. W. (1997). Oil bioremediation in salt marsh mesocosms as influenced by N and P fertilization, flooding, and season. Water, Air, and Soil Pollution, 95, 179–191.

    CAS  Google Scholar 

  • Zhu, X., Venosa, A. D., Suidan, M. T. (2004). Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments. EPA-600-R-04-075. 56 pp.

Download references

Acknowledgements

Financial and logistical support was provided by Chevron Australia Pty Ltd. Special thanks go to Leslie G. McClements and Luke J. Ulstrup for their on-site support during field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Tibbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibbett, M., George, S.J., Davie, A. et al. Just Add Water and Salt: the Optimisation of Petrogenic Hydrocarbon Biodegradation in Soils from Semi-arid Barrow Island, Western Australia. Water Air Soil Pollut 216, 513–525 (2011). https://doi.org/10.1007/s11270-010-0549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0549-z

Keywords

Navigation