Skip to main content
Log in

Optimization of Electrocoagulation Process for the Treatment of Metal Cutting Wastewaters with Response Surface Methodology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present investigation, treatment of metal cutting wastewater (MCW) using electrocoagulation (EC) process is designed and analyzed using response surface methodology (RSM). RSM is applied to optimize the operating variables viz. initial pH, current density, and operating time on the treatment of MCW in a batch mode by EC process using iron and aluminum electrodes. Quadratic models are developed for the responses such as chemical oxygen demand (COD), total organic carbon (TOC), and turbidity, and operating cost is calculated with respect to energy, electrode, and chemical consumptions. The actual COD, TOC, and turbidity removal efficiencies at optimized conditions are found to be 93.0%, 83.0%, and 99.8% for Fe electrode and 93.5%, 85.2%, and 99.9% for Al electrode, respectively, which agree well with the predicted response. The proposed model fits very well with the experimental data with R 2 adjusted correlation coefficients of 0.927 for COD, 0.924 for TOC, and 0.968 for turbidity removal for Al and 0.904 for COD, 0.976 for TOC, and 0.989 for turbidity removal for Fe electrodes, respectively. This study clearly shows that RSM is one of the suitable methods to optimize the operating conditions and maximize the COD, TOC, and turbidity removal efficiencies for both electrodes while keeping the operating costs to minimal (0.371 €/m3 for Fe and 0.337 €/m3 for Al electrodes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, J. E., Kim, B. R., Mueller, S. A., & Lofton, T. V. (2003). Composition and analysis of mineral oils and other compounds in metalworking and hydraulic fluids. Critical Reviews in Environmental Science and Technology, 33, 73–109.

    Article  CAS  Google Scholar 

  • Arslan-Alaton, I., Kabdaşlı, I., Hanbaba, D., & Kuybu, E. (2008). Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes. Journal of Hazardous Materials, 150, 166–173.

    Article  CAS  Google Scholar 

  • Barrera-Diaz, C., Roa-Morales, G., Avila-Cordoba, L., Pavon-Silva, T., & Bilyeu, B. (2006). Electrochemical treatment applied to food-processing industrial wastewater. Industrial & Engineering Chemical Research, 45, 34–38.

    Article  CAS  Google Scholar 

  • Bensadok, K., Benammar, S., Lapicque, F., & Nezzal, G. (2008). Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. Journal of Hazardous Materials, 152, 423–430.

    Article  CAS  Google Scholar 

  • Bergmann, H., Rittel, A., Iourtchouk, T., Schoeps, K., & Bouzek, K. (2003). Electrochemical treatment of cooling lubricants. Chemical Engineering and Processing, 42, 105–119.

    Article  CAS  Google Scholar 

  • Byers, J. P. (2006). Metalworking fluids. New York: CRC.

    Google Scholar 

  • Can, O. T., Bayramoglu, M., & Kobya, M. (2003). Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes. Industrial & Engineering Chemistry Research, 42, 3391–3396.

    Article  CAS  Google Scholar 

  • Canizares, P., Martinez, F., Jimenez, C., Saez, C., & Rodrigo, M. A. (2008). Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 151, 44–51.

    Article  CAS  Google Scholar 

  • Canizares, P., Martinez, F., Lobato, J., & Rodrigo, M. A. (2007). Break-up of oil-in-water emulsions by electrochemical techniques. Journal of Hazardous Materials, 145, 233–240.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41.

    Article  Google Scholar 

  • Cheng, C., Phipps, D., & Alkhaddar, R. M. (2006). Thermophilic aerobic wastewater treatment of waste metalworking fluids. Water and Environment Journal, 20, 227–232.

    Article  CAS  Google Scholar 

  • Cleceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Greeley, M., & Rajagopalan, N. (2004). Impact of environmental contaminants on machining properties of metal working fluids. Tribology International, 37, 327–332.

    Article  CAS  Google Scholar 

  • Hilal, N., Busca, G., Hankins, N., & Mohammad, A. (2004). The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. Desalination, 167, 227–238.

    Article  CAS  Google Scholar 

  • Kabdasli, I., Arslan, T., Ölmez-Hanci, T., Arslan-Alaton, I., & Tünay, O. (2009). Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of Hazardous Materials, 165, 838–845.

    Article  CAS  Google Scholar 

  • Khemis, M., Tanguy, G., Leclerc, J. P., Valentin, G., & Lapicque, F. (2005). Electrocoagulation for the treatment of oil suspensions. Trans IChemE, Part B, Process Safety and Environmental Protection, 83, 50–57.

    Article  CAS  Google Scholar 

  • Kobya, M., Ciftci, C., Bayramoglu, M., & Sensoy, M. T. (2008). Study on the treatment of waste metal cutting fluids using electrocoagulation. Separation and Purification Technology, 60, 285–291.

    Article  CAS  Google Scholar 

  • Kobya, M., & Delipinar, S. (2008). Treatment of the baker’s yeast wastewater by electrocoagulation. Journal of Hazardous Materials, 154, 1133–1140.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., & Akyol, A. (2009). Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Water Science and Technology, 60, 2261–2270.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Dedeli, A., & Sensoy, M. T. (2010). Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. Journal of Hazardous Materials, 173, 326–334.

    Article  CAS  Google Scholar 

  • Kobya, M., Hiz, H., Senturk, E., Aydiner, C., & Demirbas, E. (2006b). Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 190, 201–211.

    Article  CAS  Google Scholar 

  • Kobya, M., Senturk, E., & Bayramoglu, M. (2006a). Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, 133, 172–176.

    Article  CAS  Google Scholar 

  • Korbahti, B. K., Aktas, N., & Tanyolac, A. (2007). Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. Journal of Hazardous Materials, 148, 83–90.

    Article  Google Scholar 

  • Mollah, M. Y. A., Schennach, R., Parga, J. P., & Cocke, D. L. (2001). Electrocoagulation (EC)—science and applications. Journal of Hazardous Materials, 84, 29–41.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and product optimization using designed experiments (2nd ed.). USA: Wiley.

    Google Scholar 

  • Olmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials, 162, 1371–1378.

    Article  CAS  Google Scholar 

  • Ponselvan, F. I. A., Kumar, M., Malviya, J. R., Srivastava, V. C., & Mall, I. D. (2009). Electrocoagulation studies on treatment of biodigester effluent using aluminum electrodes. Water, Air, and Soil Pollution, 199, 371–379.

    Article  CAS  Google Scholar 

  • Prasad, R. K., Kumar, R. R., & Srivastava, S. N. (2008). Design of optimum response surface experiments for electro-coagulation of distillery spent wash. Water, Air, and Soil Pollution, 191, 5–13.

    Article  CAS  Google Scholar 

  • Rios, S., Pazos, C., & Coca, J. (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 383–389.

    Article  CAS  Google Scholar 

  • Sanchez-Calvo, L., Leclerc, J.-P., Tanguy, G., Cames, M. C., Paternotte, G., Valentin, G. (2003). An electrocoagulation unit for the purification of soluble oil wastes of high COD. Environmental Progress, 22, 57–65.

    Article  Google Scholar 

  • Saravanathamizhan, R., Mohan, N., Balasubramanian, N., Ramamurthi, V., & Basha, C. A. (2007). Evaluation of electro-oxidation of textile effluent using response surface methods. Clean, 35, 355–361.

    CAS  Google Scholar 

  • Tir, M., & Moulai-Mostefa, N. (2008). Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. Journal of Hazardous Materials, 158, 107–115.

    Article  CAS  Google Scholar 

  • Xu, X., & Zho, X. (2004). Treatment of refectory oily wastewater by electrocoagulation process. Chemosphere, 56, 889–894.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is a part of TUBITAK project. The authors thank TUBITAK for their financial support of this work under contract TUBITAK-CAYDAG-104Y267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kobya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobya, M., Demirbas, E., Bayramoglu, M. et al. Optimization of Electrocoagulation Process for the Treatment of Metal Cutting Wastewaters with Response Surface Methodology. Water Air Soil Pollut 215, 399–410 (2011). https://doi.org/10.1007/s11270-010-0486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0486-x

Keywords

Navigation