Skip to main content
Log in

Optimization of Electrocoagulation Process for the Removal of Chromium from Simulated Water Using the Response Surface Methodology

  • PHYSICAL CHEMISTRY OF WATER TREATMENT PROCESSES
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

This work is an attempt to remove Cr(VI) from simulated wastewater using electrocoagulation (EC) process where stainless steel (SS) is used as a sacrificial electrode. The central composite design (CCD) of response surface methodology (RSM) is used to optimize different operating parameters including initial pH (pHi: 1.5–9.5), current density (j: 20.75–104.15 A/m2), electrode gap (g: 1.5–2.5 cm), and treatment time (t: 0–30 min), with respect to the removal of Cr(VI) from simulated water. The high coefficient of determination for Cr(VI) (R2 = 0.9922) was found by the analysis of variance (ANOVA) between the experimental data and the predicted data using a second-order regression model. The maximum Cr(VI) removal of 88.9% was achieved at optimum conditions (pH 3.5, j = 83.3 A/m2, g = 1.75 cm, and t = 24 min) as reflected by ANOVA analysis. A foam and residues analysis has also been incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. CPCB. Pollution Control Acts, Rules and Notifications Issued, Delhi: Central Pollution Control Board, 2006.

    Google Scholar 

  2. Golbaz, S., Jafari, A.J., Rafiee, M., and Kalantary, R.R., Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory, Chem. Eng. J., 2014, vol. 253, pp. 251–257. https://doi.org/10.1016/j.cej.2014.05.074

    Article  CAS  Google Scholar 

  3. Khalifa, E.B., Rzig, B., Chakroun, R., Nouagui, H., and Hamrouni, B., Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent, Chemometr. Intell. Lab. Syst., 2019, vol. 189, pp. 18–26. https://doi.org/10.1016/j.chemolab.2019.03.014

    Article  CAS  Google Scholar 

  4. Pakzadeh, B. and Batista, J.R., Chromium removal from ion-exchange waste brines with calcium polysulfide, Water Res., 2011, vol. 45, pp. 3055–3064. https://doi.org/10.1016/j.watres.2011.03.006

    Article  CAS  Google Scholar 

  5. Kongsricharoern, N. and Polprasert, C., Chromium removal by a bipolar electro-chemical precipitation process, Water Sci. Technol., 1996, vol. 34, pp. 109–116. https://doi.org/10.1016/S0273-1223(96)00793-7

    Article  CAS  Google Scholar 

  6. Muthumareeswaran, M., Alhoshan, M., and Agarwal, G., Ultrafiltration membrane for effective removal of chromium ions from potable water, Sci. Rep., 2017, vol. 7, pp. 414–423. https://doi.org/10.1038/srep41423

    Article  CAS  Google Scholar 

  7. Chen, G., Electrochemical technologies in wastewater treatment, Sep. Purif. Technol. 2004, vol. 38, pp. 11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  CAS  Google Scholar 

  8. Heidmann, I. and Calmano, W., Removal of Cr(VI) from model wastewater by electrocoagulation with Fe electrodes, Sep. Purif. Technol., 2008, vol. 61, pp. 15–21. https://doi.org/10.1016/j.seppur.2007.09.011

    Article  CAS  Google Scholar 

  9. Bhatti, M.S., Reddy, A.S., and Thukral, A.K., Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology, J. Hazard. Mater., 2009, vol. 172, pp. 839–846. https://doi.org/10.1016/j.jhazmat.2009.07.072

    Article  CAS  Google Scholar 

  10. Aleboyeh, A., Daneshvar, N., and Kasiri, M.B., Optimization of C.I. Acid Red 14 dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process., 2008, vol. 47, pp. 827–832. https://doi.org/10.1016/j.cep.2007.01.033

    Article  CAS  Google Scholar 

  11. Guven, G., Perendeci, A., and Tanyolac¸ A., Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology, J. Hazard. Mater., 2008, vol. 157, pp. 69–78. https://doi.org/10.1016/j.jhazmat.2007.12.082

    Article  CAS  Google Scholar 

  12. Korbahti, B.K., Aktas, N., and Tanyolac¸ A., Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology, J. Hazard. Mater., 2007, vol. 148, pp. 83–90. https://doi.org/10.1016/j.jhazmat.2007.02.005

    Article  CAS  Google Scholar 

  13. Dubey, S., Parmar, N., Rekhate, C., and Prajapati, A.K., Optimization of electrocoagulation process for treatment of rice grain-based biodigester distillery effluent using surface response methodology approach, Int. J. Chem. React. Eng., 2022, vol. 20, no. 12, pp. 1261–1273. https://doi.org/10.1515/ijcre-2021-0253

    Article  CAS  Google Scholar 

  14. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, Washington, DC: APHA, 1998, 19the ed.

  15. Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 1991, 3rd ed.

    Google Scholar 

  16. Gilhotra, V., Das, L., Sharma, A., Kang, T.S., Singh, P., Dhuria, R.S., and Bhatti, M.S., Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study, J. Cleaner Prod., 2018, vol. 198, pp. 693–703. https://doi.org/10.1016/j.jclepro.2018.07.023

    Article  CAS  Google Scholar 

  17. Dargahi, A., Samarghandi, M.R., Shabanloo, A., Mahmoudi, M.M., and Nasab, H.Z., Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from Aloe Vera leaves wastes using CCD-RSM optimization: Effect of parameters, isotherm, and kinetic studies, Biomass Convers. Biorefin., 2023, vol. 13, pp. 7859–7873. https://doi.org/10.1007/s13399-021-01601-y

    Article  CAS  Google Scholar 

  18. Assadi, A., Fazli, M.M., Emamjomeh, M.M., and Ghasemi, M., Optimization of lead removal by electrocoagulation from aqueous solution using response surface methodology, Desalin. Water Treat., 2016, vol. 57, pp. 9375–9382. https://doi.org/10.1080/19443994.2015.1029529

    Article  CAS  Google Scholar 

  19. Yaghmaeian, K., Martinez, S.S., Hoseini, M., and Amiri, H., Optimization of As(III) removal in hard water by electrocoagulation using central composite design with response surface methodology, Desalin. Water Treat., 2016, vol. 57, pp. 27827–27833. https://doi.org/10.1080/19443994.2016.1177735

    Article  CAS  Google Scholar 

  20. Acharya, S., Sharma, S.K., Chauhan, G., and Shree, D., Statistical optimization of electrocoagulation process for removal of nitrates using response surface methodology, Indian Chem. Eng., 2018, vol. 60, pp. 269–284. https://doi.org/10.1080/00194506.2017.1365630

    Article  CAS  Google Scholar 

  21. Ahmadzadeh, S., Asadipour, A., Pournamdari, M., Behnam, B., Rahimi, H.R., and Dolatabadi, M., Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology, Proc. Saf. Environ. Prot., 2017, vol. 109, pp. 538–547. https://doi.org/10.1016/j.psep.2017.04.026

    Article  CAS  Google Scholar 

  22. Un, U.T., Kandemir, A., Erginel, N., and Ocal, S.E., Continuous electrocoagulation of cheese whey wastewater: An application of Response Surface Methodology, J. Environ. Manage., 2014, vol. 146, pp. 245–250. https://doi.org/10.1016/j.jenvman.2014.08.006

    Article  CAS  Google Scholar 

  23. Thirugnanasambandham, K. and Shine, K., Investigation on the removal of chromium from wastewater using electrocoagulation, Int. J. Chem. React. Eng., 2018, vol. 16, p. 20170155. https://doi.org/10.1515/ijcre-2017-0155

    Article  CAS  Google Scholar 

  24. Sharma, D., Chaudhari, P.K., and Prajapati, A.K., Removal of chromium(VI) and lead from electroplating effluent using electrocoagulation, Sep. Sci. Technol., 2018, vol. 55, pp. 321–331. https://doi.org/10.1080/01496395.2018.1563157

    Article  CAS  Google Scholar 

  25. Mahmad, M.K., Rozainy, M.R.M.A.Z., Abustan, I., and Baharun, N., Electrocoagulation process by using aluminum and stainless-steel electrodes to treat total chromium, color and turbidity, Procedia Chem., 2016, vol. 19, pp. 681–686. https://doi.org/10.1016/j.proche.2016.03.070

    Article  CAS  Google Scholar 

  26. Lu, J., Wang, Z.R., Liu, Y.L., and Tang, Q., Removal of Cr ions from aqueous solution using batch electrocoagulation: Cr removal mechanism and utilization rate of in-situ generated metal ions, Process Saf. Environ. Prot., 2016, vol. 104, pp. 436–443. https://doi.org/10.1016/j.psep.2016.04.023

    Article  CAS  Google Scholar 

  27. Demim, S., Drouiche, N., Aouabed, A., Benayad, T., Couderchet, M., and Semsari. S., Study of heavy metal removal from heavy metal mixture using the CCD method, J. Ind. Eng. Chem., 2014, vol. 20, pp. 512–520. https://doi.org/10.1016/j.jiec.2013.05.010

    Article  CAS  Google Scholar 

  28. Li, G., Yang, C., Yao, Y., and Zeng, M., Electrocoagulation of chromium in tannery wastewater by a composite anode modified with titanium: Parametric and kinetic study, Desalin. Water Treat., 2019, vol. 171, pp. 294–301. https://doi.org/10.5004/dwt.2019.24792

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the department of chemical engineering IPSA, IES Indore, for providing necessary facilities to complete this work.

Funding

The authors received no grant for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinesh Kumar Prajapati.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amitesh, Dohare, D., Jyoti, G. et al. Optimization of Electrocoagulation Process for the Removal of Chromium from Simulated Water Using the Response Surface Methodology. J. Water Chem. Technol. 45, 429–439 (2023). https://doi.org/10.3103/S1063455X2305003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X2305003X

Keywords:

Navigation