Skip to main content
Log in

Use of Granular Bentonite in the Removal of Mercury (II), Cadmium (II) and Lead (II) from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Granular bentonite has been assessed regarding its capacity to remove Hg(II), Cd(II) and Pb(II) from aqueous solutions. Sorption capacities, kinetics and the dependence of the sorption process on pH were determined. Fractional power, pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were used to model the kinetics of metal adsorption. The pseudo-second-order model showed the best fit to experimental data. Different two-parameter sorption isotherm models (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich) were used to fit the equilibrium data. Freundlich's isotherm model gave the best fit to experimental data. The selectivity of granular bentonite towards these metals is Pb(II) > Cd(II) > Hg(II). The adsorption capacities of granular bentonite towards the metals expressed in milligramme metal per gramme granular bentonite are 19.45, 13.05 and 1.7 for Pb(II), Cd(II) and Hg(II), respectively (for an initial concentration of 100 mg metal/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na–montmorillonite. Effect of pH and organic substances. Water Research, 37(7), 1619–1627.

    Article  CAS  Google Scholar 

  • Ahmad, A., Rafatullahb, M., Sulaimanb, O., Hakimi Ibrahima, M., Chiia, Y. Y., & Siddique, B. M. (2009). Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination, 247, 636–646.

    Article  CAS  Google Scholar 

  • Ahmad-Zaini, M. A., Okayama, R., & Machida, M. (2009). Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. Journal of Hazardous Materials, 170, 1119–1124.

    Article  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219–243.

    Article  Google Scholar 

  • Basha, S., & Murthy, Z. V. P. (2007). Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica. Process Biochemistry, 42, 1521–1529.

    Article  CAS  Google Scholar 

  • Behnamfard, A., & Salarirad, M. M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. Journal of Hazardous Materials, 170, 127–133.

    Article  CAS  Google Scholar 

  • Brown, P. A., Giel, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916.

    Article  CAS  Google Scholar 

  • Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50, 1095–1105.

    Article  CAS  Google Scholar 

  • Eren, E. (2009). Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. Journal of Hazardous Materials, 165, 63–70.

    Article  CAS  Google Scholar 

  • Ferguson, J. E. (1990). The heavy elements: chemistry, environmental impact and health effects. Oxford, UK: Pergamon Press Inc.

    Google Scholar 

  • Gonzales, E., Pradas, M., Villafranca Sanchez, F., Canton Cruz, M., Socias Viciana, M., & Fernandez Perez, M. (1994). Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. Journal of Chemical Technology and Biotechnology, 59, 289–293.

    Article  Google Scholar 

  • Guerra, D. L., Ribeiro Viana, R., & Airoldi, C. (2008). Adsorption of mercury cation on chemically modified clay. Materials Research Bulletin, 44, 485–491.

    Article  Google Scholar 

  • Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160, 576–581.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999a). The sorption of lead (II) ions on peat. Water Research, 33(2), 578–584.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999b). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hsieh, C. T., & Teng, H. (2000). Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon, 38, 863–869.

    Article  CAS  Google Scholar 

  • Huang, X., Liao, X., & Shi, B. (2009). Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. Journal of Hazardous Materials, 170, 1141–1148.

    Article  CAS  Google Scholar 

  • Jiang, M.-Q., Wang, Q.-P., Jin, X.-Y., & Chen, Z.-L. (2009). Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. Journal of Hazardous Materials, 170, 332–339.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Goel, J., & Rajagopal, C. (2008). Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 153, 502–507.

    Article  CAS  Google Scholar 

  • Kapoor, A., & Viraraghavan, T. (1998). Use of immobilized bentonite in removal of heavy metals from wastewater. Journal of Environmental Engineering, 124, 1020–1024.

    Article  CAS  Google Scholar 

  • Kaya, A., & Özen, A. H. (2004). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, B125, 183–189.

    Google Scholar 

  • Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chemical Engineering Journal, 145, 489–495.

    Article  CAS  Google Scholar 

  • Khan, S. A., Rehman, R., & Khan, M. A. (1994). Sorption of cesium on bentonite. Waste Management, 14(7), 629–642.

    Article  CAS  Google Scholar 

  • Khan, S. A., Rehman, R., & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271–282.

    Article  CAS  Google Scholar 

  • Lakatos, J., Brown, S. D., Snape, C. E. (1998). High sulphur coals and oxidised high rank coals as efficient sorbents for mercury removal from industrial waste solutions. Innovations in Mineral and Coal Processing. In Suna Atak, Güven Önal and Mehmet S. Çelik (Eds.), Proceedings of the 7th International Mineral Processing Symposium Istanbul (pp. 755–759).

  • McKay, G., & Porter, J. F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc onto peat. Journal of Chemical Technology and Biotechnology, 69, 309–320.

    Article  CAS  Google Scholar 

  • Mellah, A., & Chegrouche, S. (1997). The removal of zinc from aqueous solution by natural bentonite. Water Research, 31(3), 621–629.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Yamuna, R. T. (1992). Removal of Congo Red from aqueous solution by biogas waste slurry. Journal of Chemical Technology and Biotechnology, 53, 153–157.

    CAS  Google Scholar 

  • Nassem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982–3986.

    Article  Google Scholar 

  • Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15, 383–394.

    CAS  Google Scholar 

  • Ozcan, A. S., Gök, O., & Ozcan, A. (2009). Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161, 499–509.

    Article  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2009). Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170, 969–977.

    Article  CAS  Google Scholar 

  • Raji, C., & Anirudhan, S. (1998). Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Research, 32(12), 3772–3780.

    Article  CAS  Google Scholar 

  • Ricou, P., Lecuyer, I., & Le Cloirec, P. (1998). Influence of pH on the removal of heavy metallic cations by fly ash in aqueous solutions. Environmental Technology, 19, 1005–1016.

    Article  CAS  Google Scholar 

  • Saprykin, A. V., & Vizhin, V. V. (1994). Unusual dependence of mercury adsorption by montmorillonite on the small concentrations of the metal. Fresenius' Environmental Bulletin, 3, 207–211.

    CAS  Google Scholar 

  • Sengupta, S., & Bhattacheryya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 46–58.

    Article  Google Scholar 

  • Silva da Rocha, M., Iha, K., Faleiros, A. C., Corat, E. J., & Vázquez Suárez-Iha, M. E. (1998). Henry's law as a limit for an isotherm model based on a statistical mechanics approach. Journal of Colloid and Interface Science, 208, 211–215.

    Article  CAS  Google Scholar 

  • Ulmanu, M., Anger, I., Fernandez, Y., Castrillon, L., & Maranon, E. (2008). Batch chromium (VI), cadmium (II) and lead (II) removal from aqueous solution by horticultural peat. Water, Air, and Soil Pollution, 194, 209–216.

    Article  CAS  Google Scholar 

  • Ulmanu, M., Segarceanu, T., Vasiliu, C., Anger, I. (1996). Removal of copper from diluted aqueous solutions by adsorbent and ion exchange materials. Ion exchange developments and applications, SCI Conference IEX'96, U.K., (pp. 151–159).

  • Ulmanu, M., Velea, T., Anger, I., & Teodorescu, R. (2002). Romanian volcanic tuff—a promising material for some heavy metals uptake from aqueous solutions. Extraction and processing division meeting. Recycling waste treatment in mineral metal processing. Technical and economic aspect (pp. 735–743). Sweden: Lulea.

    Google Scholar 

  • Veli, S., & Ayüd, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149, 226–233.

    Article  CAS  Google Scholar 

  • Viraraghavan, T., & Kapoor, A. (1994). Adsorption of mercury from wastewater by bentonite. Applied Clay Science, 9, 31–49.

    Article  CAS  Google Scholar 

  • Wang, J. S., Huang, P. M., Hammer, U. T., & Liaw, W. K. (1985). Influence of selected cation and anion species on the adsorption of mercury (II) by montmorillonite. Applied Clay Science, 1, 125–132.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division American Society Engineering, 89, 31–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Fernández-Nava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Nava, Y., Ulmanu, M., Anger, I. et al. Use of Granular Bentonite in the Removal of Mercury (II), Cadmium (II) and Lead (II) from Aqueous Solutions. Water Air Soil Pollut 215, 239–249 (2011). https://doi.org/10.1007/s11270-010-0474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0474-1

Keywords

Navigation