Skip to main content
Log in

Assessment of In Situ Immobilization of Lead (Pb) and Arsenic (As) in Contaminated Soils with Phosphate and Iron: Solubility and Bioaccessibility

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc mine in Shaoxing, Zhejiang province of China, which has been treated with three phosphates, i.e., calcium magnesium phosphate (CMP), phosphate rock, and single super-phosphate (SSP) for 6 months in a field study. The ferrous sulfate (FeSO4) at 20 g kg−1 was then amended to the soil samples and incubated for 8 weeks in a greenhouse. The solubility and bioaccessibility tests were used to assess the effectiveness of the in situ immobilization. The result showed that phosphates addition decreased the concentrations of CaCl2-extractable Pb; however, the concentrations of water-soluble As increased upon CMP and SSP addition. With the iron addition, the water-soluble As concentrations decreased significantly, but CaCl2-extractable Pb concentrations increased. The bioaccessibility of As and Pb measured in artificial gastric and small intestinal solutions decreased with phosphate and iron application except for the bioaccessibility of As in the gastric phase with SSP addition. Combined application of phosphates and iron can be an effective approach to lower bioaccessibility of As and Pb, but has opposing effects on mobility of As and Pb in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007a). Toxicological profile for lead. U.S. department of Health and Human Services. Washington, D.C.

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007b). Toxicological profile for Arsenic. U.S. department of Health and Human Services. Washington, D.C.

  • Bao, S. D. (2000). Soil Agrochemical Analysis (3rd ed., pp. 30–38). Beijing: Agricultural Press.

    Google Scholar 

  • Beak, D. G., Basta, N. G., Scheckel, K. G., & Traina, S. J. (2006). Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40, 1364–1370. doi:10.1021/es0516413.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310. doi:10.1016/j.geoderma.2008.06.005.

    Article  CAS  Google Scholar 

  • Bosso, S. T., Enzweiler, J., & Angélica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 195, 257–273. doi:10.1007/s11270-008-9744-6.

    Article  CAS  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science and Technology, 33, 3806–3811. doi:10.1021/es980998m.

    Article  CAS  Google Scholar 

  • Brown, S., Chaney, R. L., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. Journal of Environmental Quality, 33, 522–531.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2003). Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 122, 19–28. doi:10.1016/S0269-7491(02)00283-X.

    Article  CAS  Google Scholar 

  • Cao, X., Dermatas, D., Xu, X., & Shen, G. (2008). Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environmental Science and Pollution Research, 15, 120–127. doi:10.1065/espr2007.05.416.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., & Singh, S. P. (2008). Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environmental Pollution, 152, 184–192. doi:10.1016/j.envpol.2007.05.008.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., Ma, Y. B., & Mckay, G. (2006). Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environmental Pollution, 139, 433–439. doi:10.1016/j.envpol.2005.06.007.

    Article  CAS  Google Scholar 

  • Codling, E. E. (2007). Long-term effects of lime, phosphorus, and iron amendments on water-extractable arsenic, lead, and bioaccessible lead from contaminated orchard soils. Soil Science, 172, 811–819. doi:10.1097/SS.0b013e3180dc9aa3.

    Article  CAS  Google Scholar 

  • Dutré, V., & Vandecasteele, C. (1998). Immobilization mechanism of arsenic in waste solidified using cement and lime. Environmental Science and Technology, 32, 2782–2787. doi:10.1021/es971090j.

    Article  Google Scholar 

  • Gadepalle, V. P., Ouki, S. K., Herwijnen, R. V., & Hutchings, T. (2008). Effects of amended compost on mobility and uptake of arsenic by rye grass in contaminated soil. Chemosphere, 72, 1056–1061. doi:10.1016/j.chemosphere.2008.03.048.

    Article  CAS  Google Scholar 

  • Geelhoed, J. S., Hiemstra, T., & Van Riemsdijk, W. H. (1998). Competitive interaction between phosphate and citrate on goethite. Environmental Science and Technology, 32, 2119–2123. doi:10.1021/es970908y.

    Article  CAS  Google Scholar 

  • Genz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38, 3523–3530. doi:10.1016/j.watres.2004.06.006.

    Article  CAS  Google Scholar 

  • Kim, J. Y., & Davis, A. (2003). Stabilization of available arsenic in highly contaminated mine tailings using iron. Environmental Science and Technology, 37, 189–195. doi:10.1021/es020799+.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144, 62–69. doi:10.1016/j.envpol.2006.01.010.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manage, 28, 215–225. doi:10.1016/j.wasman.2006.12.012.

    Article  CAS  Google Scholar 

  • Lenoble, V., Laclautre, C., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2005). Arsenic removal by adsorption on iron(III) phosphate. Journal of hazardous materials, 123, 262–268. doi:10.1016/j.jhazmat.2005.04.005.

    Article  CAS  Google Scholar 

  • Liu, R., & Zhao, D. (2007). Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 41, 2491–2502. doi:10.1016/j.watres.2007.03.026.

    Article  CAS  Google Scholar 

  • Liu, H., Anne, P., & Liao, B. (2005). Metal contamination of soils and crops affected by the chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339, 153–166. doi:10.1016/j.scitotenv.2004.07.030.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Choate, A. L., & Rao, G. N. (1997). Effects of incubation and phosphate rock on lead extractability and speciation in contaminated soils. Journal of Environmental Quality, 26, 801–807.

    Article  CAS  Google Scholar 

  • Martin, T. A., & Ruby, M. V. (2003). In situ remediation of arsenic in contaminated soils. Remediation Journal, 14, 21–32. doi:10.1002/rem.10092.

    Article  Google Scholar 

  • Mir, K. A., Rutter, A., Koch, I., Smith, P., Reimer, K. J., & Poland, J. S. (2007). Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta, 15, 1507–1518. doi:10.1016/j.talanta.2007.01.068.

    Article  Google Scholar 

  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters, 6, 121–133. doi:10.1007/s10311-007-0133-y.

    Article  CAS  Google Scholar 

  • Mirsal, I. (2004). Soil Pollution: Origin, Monitoring and Remediation. New York: Springer.

    Google Scholar 

  • Mollah, M. Y. A., Kesmez, M., & Cocke, D. L. (2004). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Science of the Total Environment, 325, 255–262. doi:10.1016/j.scitotenv.2003.09.012.

    Article  CAS  Google Scholar 

  • Moore, T. J., Rightmire, C. M., & Vempati, R. K. (2000). Ferrous iron treatment of soils contaminated with wood-preserving solution. Soil and Sediment Contamination, 9, 375–405. doi:10.1080/10588330091134310.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334. doi:10.1021/es010204v.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Tolls, J., Sips, A. J., & Groten, J. P. (2003). In vitro intestinal lead uptake and transport in relation to speciation. Archives of Environmental Contamination and Toxicology, 44, 116–124. doi:10.1007/s00244-002-1226-z.

    Article  CAS  Google Scholar 

  • Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science and Technology, 40, 4317–4323. doi:10.1021/es0604156.

    Article  CAS  Google Scholar 

  • Ricardo, M., Cao, X. D., Chen, M., & Ma, Q. Y. (2003). Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 305, 117–127. doi:10.1016/S0048-9697(02)00469-2.

    Article  Google Scholar 

  • Rodriguez, R., Basta, N. T., Casteel, S. W., & Pacel, W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649. doi:10.1021/es980631h.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430. doi:10.1021/es950057z.

    Article  CAS  Google Scholar 

  • Sarkar, D., Quazi, S., Makris, K. C., Datta, R., & Khairom, A. (2007). Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Archives of Environmental Contamination and Toxicology, 53, 329–336. doi:10.1007/s00244-006-0170-8.

    Article  CAS  Google Scholar 

  • Stachowicz, M., Hiemstra, T., & van Riemsdijk, W. H. (2008). Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PΟ 3-4 , and CO 2-3 ions on goethite. Journal of Colloid and Interface Science, 320, 400–414. doi:10.1016/j.jcis.2008.01.007.

    Article  CAS  Google Scholar 

  • Subacz, J. L., Barnett, M. O., Jardine, P. M., & Stewart, M. A. (2007). Decreasing arsenic bioaccessibility bioavailability in soils with iron amendments. Journal of Environmental Science and Health, Part A, 42, 1317–1329. doi:10.1080/ 10934520701436047.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Zhu, Y. G., Chen, S. B., Tang, L. L., & Chen, X. P. (2004). Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environment International, 30, 531–537. doi:10.1016/j.envint.2003.10.008.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Zhu, Y. G., Cui, Y. S., Duan, J., & Tang, L. L. (2006). The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International, 32, 682–689. doi:10.1016/j.envint.2006.03.003.

    Article  Google Scholar 

  • Taylor, M., & Fuessle, R. W. (1994). Stabilization of arsenic wastes. Document HWRIC RR-073, Hazardous Waste Research and Information Center.

  • Xie, Z., Wang, B., Sun, Y., & Li, J. (2006). Field demonstration of reduction of lead availability in soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings using phosphorus fertilizers. Journal of Zhejiang University Science B, 7, 43–50.

    Article  CAS  Google Scholar 

  • Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003). Factors controlling the bioaccessibility of arsenic(V) and lead(II) in soil. Soil and Sediment Contamination, 12, 165–179. doi:10.1080/713610968.

    Article  CAS  Google Scholar 

  • Yang, L., Donahoe, R. J., & Redwine, J. C. (2007). In situ chemical fixation of arsenic contaminated soils: An experimental study. Science of the Total Environment, 387, 28–41. doi:10.1016/j.scitotenv.2007.06.024.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Chen, S. B., & Yang, J. C. (2004). Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 30, 351–356. doi:10.1016/j.envint.2003.07.001.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., et al. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese Rice. Environmental Science and Technology, 42, 5008–5013. doi:10.1021/es8001103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (No. 20607028), National High Technology Research and Development Program of China (No.2008AA06Z336), and Projects of International Cooperation and Exchanges NSFC (NSFC-NOW; 20811130492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshan Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Du, X., Weng, L. et al. Assessment of In Situ Immobilization of Lead (Pb) and Arsenic (As) in Contaminated Soils with Phosphate and Iron: Solubility and Bioaccessibility. Water Air Soil Pollut 213, 95–104 (2010). https://doi.org/10.1007/s11270-010-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0370-8

Keywords

Navigation