Skip to main content
Log in

Invasive Freshwater Macrophyte Alligator Weed: Novel Adsorbent for Removal of Malachite Green from Aqueous Solution

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The batch sorption experiments were carried out using a novel adsorbent, freshwater macrophyte alligator weed, for the removal of basic dye malachite green from aqueous solution. Effects of process parameters such as initial solution pH, contact time, adsorbent concentration, particle size, and ion strength were investigated. The adsorbent was characterized by FT-IR. The adsorption of malachite green by alligator weed was solution pH dependent. The adsorption reached equilibrium at 240 min for two particle size fractions. The pseudo-first-order equation, Ritchie second-order equation, and intraparticle diffusion models were tested. The results showed that adsorption of malachite green onto alligator weed followed the Ritchie second-order equation very well and the intraparticle diffusion played important roles in the adsorption process. The Langmuir and Freundlich equations were applied to the data related to the adsorption isotherms and the observed maximum adsorption capacity (q max) was 185.54 mg g−1 at 20°C according to the Langmuir model. The effects of particle size, adsorbent concentration, and ionic strength on the malachite green adsorption were very marked. The alligator weed could serve as low-cost adsorbents for removing malachite green from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bekçi, Z., Özveri, C., Seki, Y., & Yurdakoç, K. (2008). Sorption of malachite green on chitosan bead. Journal of Hazardous Materials, 154, 254–261. doi:10.1016/j.jhazmat.2007.10.021.

    Article  CAS  Google Scholar 

  • Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. Journal of Hazardous Materials, 161(2–3), 1454–1460.

    Article  CAS  Google Scholar 

  • Cengiz, S., & Cavas, L. (2008). Removal of methylene blue by invasive marine seaweed. Bioresource Technology, 99, 2357–2363. doi:10.1016/j.biortech.2007.05.011.

    Article  CAS  Google Scholar 

  • Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S., & Thomas Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, 305–316. doi:10.1016/j.desal.2004.10.014.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Ayazloo, M., Khataee, A. R., & Pourhassan, M. (2007). Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresource Technology, 98, 1176–1182. doi:10.1016/j.biortech.2006.05.025.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1907). Udber die adsorption in Loesungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89, 121–124. doi:10.1016/S0960-8524(03)00058-0.

    Article  CAS  Google Scholar 

  • Gómez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69, 1151–1158. doi:10.1016/j.chemosphere.2007.03.076.

    Article  CAS  Google Scholar 

  • Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., et al. (2003). Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes and Pigments, 56, 219–229. doi:10.1016/S0143-7208(02)00160-2.

    Article  CAS  Google Scholar 

  • Hamdaoui, O., Saoudi, F., Chiha, M., & Naffrechoux, E. (2008). Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modeling. Chemical Engineering Journal, 143, 73-84.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & EI-Khaiary, M. I. (2008a). Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579. doi:10.1016/j.jhazmat.2008.02.054.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & EI-Khaiary, M. I. (2008b). Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. Journal of Hazardous Materials, 153, 701–708. doi:10.1016/j.jhazmat.2007.09.019.

    Article  CAS  Google Scholar 

  • Huang, C. P., & Smith, E. H. (1981). Removal of Cd (II) from plating wastewater by an activated carbon process. In W. J. Cooper (Ed.), Chemistry in water reuse. Ann Arbor: Ann Arbor Science Publishers.

    Google Scholar 

  • Isik, M., & Sponza, D. T. (2008). Anaerobic/aerobic treatment of a simulated textile wastewater. Separation and Purification Technology, 60, 64–72. doi:10.1016/j.seppur.2007.07.043.

    Article  CAS  Google Scholar 

  • Khadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S., & Elleuch, B. (2009). Discoloration and detoxification of Congo red dye solution by means of ozone treatment for possible water reuse. Journal of Hazardous Materials, 161(2–3), 974–981.

    Article  CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (1999). Color removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 17, 269–282.

    CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (2000). Color removal from synthetic dye wastewater using a bioadsorbent. Water, Air, and Soil Pollution, 120, 283–294. doi:10.1023/A:1005207803041.

    Article  CAS  Google Scholar 

  • Kim, D. S., & Park, Y. S. (2008). Comparison study of dyestuff wastewater treatment by the coupled photocatalytic oxidation and biofilm process. Chemical Engineering Journal, 139, 256–263. doi:10.1016/j.cej.2007.07.095.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403. doi:10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  • Mahmoud, A. S., Ghaly, A. E., & Brooks, M. S. (2007). Removal of dye from textile wastewater using plant oils under different pH and temperature conditions. American Journal of Environmental Science, 3, 205–218.

    Article  CAS  Google Scholar 

  • Nemr, A. E., Abdelwahab, O., EI-Sikaily, A., & Khaled, A. (2009). Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of Hazardous Materials, 161(1), 102–110.

    Google Scholar 

  • Pavan, F. A., Mazzocato, A. C., & Gushikem, Y. (2008). Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresource Technology, 99, 3162–3165. doi:10.1016/j.biortech.2007.05.067.

    Article  CAS  Google Scholar 

  • Ritchie, A. G. (1977). Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. Journal of the Chemical Society, Faraday Transactions, 73, 1650–1653. doi:10.1039/f19777301650.

    Article  CAS  Google Scholar 

  • Sirés, I., Guivarch, E., Oturan, N., & Oturan, M. A. (2008). Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere, 72, 592–600. doi:10.1016/j.chemosphere.2008.03.010.

    Article  CAS  Google Scholar 

  • Sirianuntapiboon, S., Sadahiro, O., & Salee, P. (2007). Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes. Journal of Environmental Management, 85, 162–170. doi:10.1016/j.jenvman.2006.09.001.

    Article  CAS  Google Scholar 

  • Sleiman, M., Vildozo, D., Ferronato, C., & Chovelon, J. M. (2007). Photocatalytic degradation of azo dye metanil yellow: optimization and kinetic modeling using a chemometric approach. Applied Catalysis B Environmental, 77, 1–11. doi:10.1016/j.apcatb.2007.06.015.

    Article  CAS  Google Scholar 

  • Valderrama, C., Cortina, J. L., Farran, A., Gamisans, X., & de las Heras, F. X. (2008). Evaluation of hyper-cross-linked polymeric sorbents (Macronet MN200 and MN300) on dye (Acid red 14) removal process. Reactive and Functional Polymer, 68, 679–691.

    CAS  Google Scholar 

  • Wang, X. S., & Qin, Y. (2006). Removal of Ni (II), Zn (II) and Cr (VI) from aqueous solution by Alternanthera philoxeroides biomass. Journal of Hazardous Materials, B138, 582–588. doi:10.1016/j.jhazmat.2006.05.091.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Environmental Engineering Division, 89, 31–59.

    Google Scholar 

  • Zidane, F., Drogui, P., Lekhlif, B., Bensaid, J., Blais, J. F., Belcadi, S., et al. (2008). Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. Journal of Hazardous Materials, 155, 153–163. doi:10.1016/j.jhazmat.2007.11.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Song Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.S. Invasive Freshwater Macrophyte Alligator Weed: Novel Adsorbent for Removal of Malachite Green from Aqueous Solution. Water Air Soil Pollut 206, 215–223 (2010). https://doi.org/10.1007/s11270-009-0097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0097-6

Keywords

Navigation