Skip to main content
Log in

An invasive plant Ageratum houstonianum L. as an adsorbent for the removal of triphenylmethane dye (malachite green): isotherm, kinetics, and thermodynamic studies

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study has focused on the biosorption of a triphenylmethane dye malachite green (MG) onto the leaf biomass of an undesired weed plant Ageratum houstonianum (AHLB). The effects of different contact time, temperature, biomass dose, and initial dye concentration are investigated on the biosorption of the test dye by the given adsorbent. Adsorption isotherm and kinetics of MG removal using AHLB followed the Freundlich’s isotherm model and pseudo-first-order model of kinetics, indicating that the process of chemisorption occurred. The MG adsorption data fitted best to the Langmuir’s model having the highest correlation coefficient value R2 = 0.998. The magnitude of adsorption capacity of Langmuir’s isotherm model (qmax = 161.29 mg/g) was found to be comparable with experimental to the value obtained experimentally (qe = 103.22 mg/g). This maximum adsorption capacity has occurred with 20 mg/100 ml biomass dose, in 20-min contact time, at 45 °C temperature, from 500 ppm initial dye concentration. Thermodynamic parameters were calculated in order to identify the adsorption process. It revealed that, because of the positive values of ∆H (+ 1.75 KJmol−1) and negative values ∆G (–5.16 KJmol−1 to –5.51 KJmol−1) as well as positive value of ∆S (+ 17.34 JK−1 mol−1), the adsorption processes have endothermic, chemical and spontaneous nature. The experimental data found to be in good agreement with pseudo-first-order kinetic model (R2 = 0.971). The identification of active sites on AHLB surface was done via FT-IR spectroscopy. Thus, C = S, C = O, C≡C, –NO2, –N = N–, –NCS, C≡N, and N≡N stretches contained in the AHLB were the causable elements for effective adsorption of MG from the aqueous medium. The results revealed that MG can be removed from aqueous solutions using this weed adsorbent growing in abundance on earth. The use of such biosorbents could also be helpful in maintaining the undesired plants and their sequel problems through their exploitation as biosorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data as well as the material will be provided on request.

Abbreviations

MG:

Malachite green

AHLB:

Ageratum houstonianum Leaf biomass

ΔGº:

Standard Gibbs free energy

ΔG :

Change in the Gibbs free energy of activation

ΔHº:

Standard enthalpy

ΔH :

Activation enthalpy

ΔSº:

Standard entropy

ΔS :

Activation entropy

FT-IR:

Fourier-transform infrared spectroscopy

KF :

Freundlich constant

KL :

Langmuir constant

KT :

Equilibrium binding constant

W:

Mass of the AHLB g

1/n:

Sorption intensity

qe :

Adsorption capacity mg/g

qe, cal. :

Calculated value mg/g

T:

Temperature (K)

qmax :

Maximum adsorption capacity in the monolayer mg/g

R:

Universal gas constant 8.314 J K−1 mol−1

V:

Volume of solution (L)

References

  1. Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22. https://doi.org/10.1016/j.jenvman.2017.12.075

    Article  Google Scholar 

  2. El-Sheekh MM, El Shafay SM, El-Shanshoury AE-RR, Hamouda R, Gharieb DY, Abou-El-Souod GW (2023) Impact of immobilized algae and its consortium in biodegradation of the textile dyes. Int J Phytorem 25(6):687–696. https://doi.org/10.1080/15226514.2022.2103093

    Article  Google Scholar 

  3. Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 1:7314–7322. https://doi.org/10.1016/j.biortech.2010.04.092

    Article  Google Scholar 

  4. Sahoo PR, Prakash K, Kumar A, Kumar S (2017) Efficient reversible optical sensing of water achieved through the conversion of H-aggregates of a merocyanine salt to J-aggregates. Chem Sel 2:5924–5932. https://doi.org/10.1002/slct.201700940

    Article  Google Scholar 

  5. Mahapatra NN (2016) Textile dyes. Boca Raton: CRC Press; New Delhi: Woodhead Publishing India Pvt. https://doi.org/10.1201/b21336

  6. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  Google Scholar 

  7. Shamey R, Zhao X (2014) Modelling, simulation and control of the dyeing process. Elsevier, Amsterdam, pp 1–30. https://doi.org/10.1533/9780857097583.1

    Book  Google Scholar 

  8. Palukurty MA, Allu T, Chitturi A, Somalanka SR (2014) Adsorption of malachite green from synthetic waste water onto activated carbon from corn cob. J Chem Biol Phy Sci 4:1910–1921. https://www.jcbsc.org/issue-old/a/4/3

    Google Scholar 

  9. Gerundo N, Alderman DJ, Clifton-Hadely RS, Feist SW (1991) Pathological effects of repeated doses of malachite green: a preliminary study. J Fish Dis 14:521–532. https://doi.org/10.1111/j.1365-2761.1991.tb00607.x

    Article  Google Scholar 

  10. Kumar KV, Ramamurthi V, Sivanesan S (2006) Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigm 69:102–107. https://doi.org/10.1016/j.dyepig.2005.02.005

    Article  Google Scholar 

  11. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329. https://doi.org/10.1016/j.aquatox.2003.09.008

    Article  Google Scholar 

  12. Evenko CR, Dzomback DA (1997) Remediation of metals contaminated soils and groundwater. Technology Evaluation Rep. TE-97–01, Ground-Water Remediation Technologies Analysis Center, Pittsburgh. https://www.clu-in.org/download/toolkit/metals.pdf

  13. Ibigbami TB, Dawodu FA, Akinyeye OJ (2016) Removal of heavy metals from pharmaceutical industrial wastewater effluent by combination of adsorption and chemical precipitation methods. Am J Appl Chem 4:24–32. https://doi.org/10.11648/j.ajac.20160401.15

    Article  Google Scholar 

  14. Nozad E, Marjani AP, Mahmoudian M (2022) A novel and facile semi-IPN system in fabrication of solvent resistant nano-filtration membranes for effective separation of dye contamination in water and organic solvents. Sep Purif Technol 282:120121. https://doi.org/10.1016/j.seppur.2021.120121

    Article  Google Scholar 

  15. Khan S, Malik A (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res Int 25:4446–4458. https://doi.org/10.1007/s11356-017-0783-7

    Article  Google Scholar 

  16. Madsen HT (2014) Membrane filtration in water treatment– removal of micropollutants. In: Chemistry of Advanced Environmental Purification Processes of Water by Erik Sogaard: Fundamentals and applications. Elsevier, pp 199–248. https://doi.org/10.1016/B978-0-444-53178-0.00006-7

  17. Adane T, Adugna AT, Alemayehu E (2021) Textile industry effluent treatment techniques. J Chem 2021(5314404):1–14. https://doi.org/10.1155/2021/5314404

    Article  Google Scholar 

  18. Dionisio J, Gonçalves C, Guedes P, Ribeiro AB, Couto N (2021) Electrochemical treatment of effluent for the removal of contaminants of emergent concern and culturable microorganisms. Water 13:520. https://doi.org/10.3390/w13040520

    Article  Google Scholar 

  19. Drogui P, Asselin M, Kaur BSK, Benmoussa H (2008) Electrochemical removal of pollutants from agro-industry wastewaters. Sep Sci Technol 61:301–310. https://doi.org/10.1016/j.seppur.2007.10.013

    Article  Google Scholar 

  20. Vijayaraghavan J, Pushpa TB, Basha SJS, Jegan J (2015) Isotherm, kinetics and mechanistic studies of methylene blue biosorption onto red seaweed Gracilaria corticata. Desalin Water Treat 19:1–9. https://doi.org/10.1080/19443994.2015.1060174

    Article  Google Scholar 

  21. Abdolali A, Guo WS, Ngo HH, Chen SS, Naguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66. https://doi.org/10.1016/j.biortech.2013.12.037

    Article  Google Scholar 

  22. Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79. https://wgbis.ces.iisc.ac.in/energy/water/paper/biosorption/biosorption.htm

    Google Scholar 

  23. Bhatnagar A, Minocha AK (2006) Conventional and non-conventional adsorbents for removal of pollutants from water - a review. Indian J Chem Technol 13:203–217. https://nopr.niscpr.res.in/bitstream/123456789/7020/1/IJCT%2013%283%29%20203-217.pdf

    Google Scholar 

  24. Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioproc E 15:86–102. https://doi.org/10.1007/s12257-009-0199-4

    Article  Google Scholar 

  25. Torres E (2020) Biosorption: a review of the latest advances. Processes 8:1–23

    Article  Google Scholar 

  26. Alkhabbas M, Al-Ma’abreh AM, Edris G, Saleh T, Alhmood H (2023) Adsorption of anionic and cationic dyes on activated carbon prepared from oak cupules: kinetics and thermodynamics studies. Int J Environ Res Public Health 20(4):3280. https://doi.org/10.3390/ijerph20043280

    Article  Google Scholar 

  27. Nayak SS, Mirgane NA, Shivankar VS, Pathade KB, Wadhawa GC (2021) Adsorption of methylene blue dye over activated charcoal from the fruit peel of plant Hydnocarpus pentandra. Mater Today: Proc Int Conf Newer Trends Innov Mech Eng: Mater Sci 37:2302–2305. https://doi.org/10.1016/j.matpr.2020.07.728

    Article  Google Scholar 

  28. Chen H, Zhang L, Cheng X, Cheng S, Yan D (2014) Adsorption behavior of malachite green from aqueous solution onto bamboo leaves biomass. Asian J Chem 26:6579–6582. https://doi.org/10.14233/ajchem.2014.16638

    Article  Google Scholar 

  29. Dawkar VV, Jadhav UU, Jadhav SU, Govindwar SP (2008) Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. J Appl Microbiol 105:14–24. https://doi.org/10.1111/j.1365-2672.2008.03738.x

    Article  Google Scholar 

  30. Khalid A, Kausar F, Arshad M, Mahmood T, Ahmed I (2012) Accelerated decolourisation of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment. Appl Microbiol Biotechnol 96:1599–1606. https://doi.org/10.1007/s00253-012-3877-7

    Article  Google Scholar 

  31. Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723. https://doi.org/10.1016/j.jhazmat.2010.11.049

    Article  Google Scholar 

  32. Sandhya S, Sarayu K, Uma B, Swaminathan K (2008) Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harboring azoreductases gene from Bacillus laterosporus RRK1. Bioresour Technol 99:2187–2191. https://doi.org/10.1016/j.biortech.2007.05.027

    Article  Google Scholar 

  33. Shehnaz PIB, Ahmad N, Ahmed M, Raghuwanshi S, Kumar V, Siddiqui SI, Oh S (2023) Live biomass of Rigidoporus vinctus: a sustainable method for decoloration and detoxification of dyes in water. Microorganisms 11:1435. https://doi.org/10.3390/microorganisms11061435

    Article  Google Scholar 

  34. Elgarahy AM, Maged A, Elwakeel KZ, El-Gohary F, El-Qelish M (2022) Tuning cationic/anionic dyes sorption from aqueous solution onto green algal biomass for biohydrogen production. Environ Res 216:114522. https://doi.org/10.1016/j.envres.2022.114522

    Article  Google Scholar 

  35. Pathy A, Krishnamoorthy N, Chang SX, Paramasivan B (2022) Malachite green removal using algal biochar and its composites with kombucha SCOBY: an integrated biosorption and phycoremediation approach. Surf Interfaces 30:101880. https://doi.org/10.1016/j.surfin.2022.101880

    Article  Google Scholar 

  36. Kumar A, Kumar S, Bhati HP, Singh R, Tyagi A, Kumar P, Charaya MU (2022) Biosorption of Basic fuchsin dye by mycomass of dye-tolerant fungal strains isolated from dye-treated soils. Front Crop Improv 10(V):2201–2206

    Google Scholar 

  37. Song J, Han G, Wang Y, Jiang X, Zhao D, Li M, Yang Z, Ma Q, Parales RE, Ruan Z, Mu Y (2020) Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci Rep 10:4502. https://doi.org/10.1038/s41598-020-61442-z

    Article  Google Scholar 

  38. Samimi M, Shahriari-Moghadam M (2023) The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: kinetics, equilibrium and thermodynamic studies. Int J Phytoremediation 25:. https://doi.org/10.1080/15226514.2022.2156978

  39. Aslaheh HS, Marjani AP, Balkanloo PG (2023) Pelargonium as a cost-effective additive in bio-composite adsorbent in removing dyes from wastewater: Equilibrium, kinetic, and thermodynamic studies. J Poly Environ 31:3230–3247. https://doi.org/10.1007/s10924-023-02794-1

    Article  Google Scholar 

  40. Bayat M, Salehi E, Mahdieh M (2023) Chromochloris zofingiensis microalgae as a potential dye adsorbent: adsorption thermo-kinetic, isothermal, and process optimization. Algal Res 71:103043. https://doi.org/10.1016/j.algal.2023.103043

    Article  Google Scholar 

  41. Khalaf HA, El-Seekh MM, Makhlof MEM (2023) Lychaete pellucid as a novel biosorbent for the biodegradation of hazardous azo dyes. Environ Monit Assess 195:929. https://doi.org/10.1007/s10661-023-11518-w

    Article  Google Scholar 

  42. Ouettar L, Guechi E-K, Hamdaoui O, Fertikh N, Saoudi F, Alghyamah A (2023) Biosorption of triphenyl methane dyes (malachite green and crystal violet) from aqueous media by alfa (Stipa tenacissima L.) leaf powder. Molecules 28:3313. https://doi.org/10.3390/molecules28083313

    Article  Google Scholar 

  43. Hua Z, Pana Y, Hong Q (2023) Adsorption of congo red dye in water by orange peel biochar modified with CTAB. RCS Adv 13:12502–12508

    Google Scholar 

  44. Das S, Singh S, Garg S (2019) Agri-residual waste, wheat bran as a biosorbent for mitigation of dye pollution in industrial wastewaters. Oriental J Chem 35:1565–1573. https://doi.org/10.1002/jobm.202100502

    Article  Google Scholar 

  45. Banerjee S, Debsarkar A, Dutta S (2018) Adsorption of two basic dyes methylene blue and malachite green onto low cost adsorbent rice husk ash: a batch study. Int J Agri Environ Biotechnol 11:421–426. https://doi.org/10.30954/0974-1712.06.2018.1

    Article  Google Scholar 

  46. Reis HCO, Cossolin AS, Santos BAP, Castro KC, Pereira GM, Silva VC, Sousa PT Jr, Dall’Oglio EL, Vasconcelos LG, Morais EB (2018) Malt bagasse waste as biosorbent for malachite green: an ecofriendly approach for dye removal from aqueous solution. Int J Biotechnol Bioeng 12:118–126. https://doi.org/10.5281/zenodo.1340591

    Article  Google Scholar 

  47. Jia Z, Li Z, Ni T, Li S (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mole Liq 229:285–292. https://doi.org/10.1016/j.molliq.2016.12.059

    Article  Google Scholar 

  48. Banerjee S, Sharma GC, Gautam RK, Chattopadhyaya MC, Upadhyay SN, Sharma YC (2016) Removal of malachite green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. J Mol Liq 213:162–172. https://doi.org/10.1016/j.molliq.2015.11.011

    Article  Google Scholar 

  49. Tahir H, Sultan M, Akhtar N, Hameed U, Abid T (2016) Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. J Saudi Chem Soc 20:115–121. https://doi.org/10.1016/j.jscs.2012.09.007

    Article  Google Scholar 

  50. Chukki J, Shanthakumar S (2016) Optimization of malachite green dye removal by Chrysanthemum indicum using response surface methodology. Environ Prog Sustainable Energy 35:1415–1419

    Article  Google Scholar 

  51. Hammud HH, Shmait A, Hourani N (2015) Removal of malachite green from water using hydrothermally carbonized pine needles. RSC Adv 5:7909–7920. https://doi.org/10.1039/C4RA15505J

    Article  Google Scholar 

  52. Uddin MT, Islam MA, Mahmud S, Rukanuzzaman M (2009) Adsorptive removal of methylene blue by tea waste. J Hazard Mater 164:53–60. https://doi.org/10.1016/j.jhazmat.2008.07.131

    Article  Google Scholar 

  53. Kushwaha AK, Gupta N, Chattopadhyaya MC (2014) Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J Saudi Chem Soc 18:200–207

    Article  Google Scholar 

  54. Guechi E-K, Hamdaoui Q (2013) Cattail leaves as a novel biosorbent for the removal of malachite green from liquid phase: data analysis by non-linear technique. Desalin Water Treat 51:3371–3380

    Article  Google Scholar 

  55. Bello OS, Ahmad MA (2012) Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. Sep Sci Technol 47:903–912

    Article  Google Scholar 

  56. Chowdhury S, Saha PD (2012) Scale-up of a dye adsorption process using chemically modified rice husk: optimization using response surface methodology. Desalin Water Treat 37:331–336. https://doi.org/10.1080/19443994.2012.661289

    Article  Google Scholar 

  57. Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J Taiwan Inst Chem Eng 43:604–613. https://doi.org/10.1016/j.jtice.2012.01.008

    Article  Google Scholar 

  58. Franca AS, Oliveira LS, Saldanha SA, Santos PIA, Salum SS (2010) Malachite green adsorption by mango (Mangifera indica L.) seed husks: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 19:241–248. https://doi.org/10.5004/dwt.2010.1105

    Article  Google Scholar 

  59. Bhati HP, Charaya MU (2018) Factors affecting the biosorption of copper through copper-treated Aspergillus fumigates biomass. Progress Res Int J 13:617–623

    Google Scholar 

  60. Namdhari BS, Rohilla SK, Salar RK, Gahlawat SK, Bansal P, Saran AK (2012) Decolorization of reactive blue MR, using Aspergillus species isolated from textile waste water. ISCA J Biol Sci 1:24–29. http://www.isca.me/IJBS/Archive/v1/i1/3.ISCA-JBS-2012-009.pdf

    Google Scholar 

  61. Ramya M, Anusha B, Kalavathy S, Devilaksmi S (2007) Biodecolorization and biodegradation of reactive blue by Aspergillus sp. African J Biotechnol 6:1441–1445. https://doi.org/10.4314/AJB.V6I12.57566

    Article  Google Scholar 

  62. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  63. Langmuir I (1916) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  64. Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochim URSS 12:327–356. https://cir.nii.ac.jp/crid/1573387451182255872

    Google Scholar 

  65. Ahmad R, Kumar R (2011) Adsorption of amaranth dye onto alumina reinforced polystyrene. Clean (Weinh) 39:74–82. https://doi.org/10.1002/clen.201000125

    Article  Google Scholar 

  66. Raval NP, Shah PU, Shah NK (2017) Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci 7:3407–3445. https://doi.org/10.1007/s13201-016-0512-2

    Article  Google Scholar 

  67. Natha J, Dasa A, Ray L (2015) Biosorption of malachite green from aqueous solution using resting and immobilised biomass of Bacillus cereus M 1 16 (MTCC 5521). Indian Chem Eng 57:82–100. https://doi.org/10.1080/00194506.2014.997813

    Article  Google Scholar 

  68. Panda GC, Das SK, Guha AK (2009) Jute stick powder as a potential biomass for the removal of Congo red and rhodamine B from their aqueous solution. J Hazard Mater 164:374–379. https://doi.org/10.1016/j.jhazmat.2008.08.015

    Article  Google Scholar 

  69. Paso KG (2022) Chapter 6 - Constructing thermodynamic models of toxic metal biosorption. In: Das S, Dash HR (eds) Microbial biodegradation and bioremediation, 2nd edn. Elsevier, pp 109–143. https://doi.org/10.1016/B978-0-323-85455-9.00020-5

    Chapter  Google Scholar 

  70. Erkey C, Türk M (2022) Chapter 6 - Thermodynamics and kinetics of adsorption of metal complexes on surfaces from supercritical solutions. In: Synthesis of Nanostructured Materials in Near and/or Supercritical Fluids. Supercritical Fluid Science and Technology, Elsevier (8)73–127. https://doi.org/10.1016/B978-0-444-64089-5.00047-0

  71. Samimi M, Shahriari-Moghadam M (2021) Isolation and identification of Delftia lacustris strain-MS3 as a novel and efficient adsorbent for lead biosorption: kinetics and thermodynamic studies, optimization of operating variables. Biochem Eng J 173:108091. https://doi.org/10.1016/j.bej.2021.108091

    Article  Google Scholar 

  72. Khodabakhshi A, Mohammadi-Moghadam F, Shakeri K, Hemati S (2022) Equilibrium and thermodynamic studies on the biosorption of Lead (II) by living and nonliving biomass of Penicillium notatum. J Chem 2022:3109212. https://doi.org/10.1155/2022/3109212

    Article  Google Scholar 

  73. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotech Adv 11:781–812

    Article  Google Scholar 

  74. Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38(1):89–99. https://doi.org/10.1016/S0032-9592(02)00051-1

    Article  Google Scholar 

  75. Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater- a review. J Water Process Eng 42:102148. https://doi.org/10.1016/j.jwpe.2021.102148

    Article  Google Scholar 

  76. Al-Zaban MI, Alharbi NK, Albarakaty FM, Alharthi S, Hassan SHA, Fawzy MA (2022) Experimental modeling investigations on the biosorption of Methyl violet 2B dye by the brown seaweed Cystoseira tamariscifolia. Sustainability 14:5285. https://doi.org/10.3390/su14095285

    Article  Google Scholar 

  77. Ghosh A (2021) Application of Cocos nucifera’s husk to remove malachite green dye and response surface modeling. Bulg Chem Commun 53:44–50. https://doi.org/10.34049/bcc.53.D.28

    Article  Google Scholar 

  78. Hasani N, Selimi T, Mele A, Thaçi V, Halili J, Berisha A, Sadiku M (2022) Theoretical, equilibrium, kinetics and thermodynamic investigations of methylene blue adsorption onto lignite coal. Molecules 27:1856. https://doi.org/10.3390/molecules27061856

    Article  Google Scholar 

  79. Sah MK, Edbey K, EL-Hashani A, Almshety S, Mauro L, Alomar TS, AlMasoud N, Bhattarai A (2022) Exploring the biosorption of methylene blue dye onto agricultural products: a critical review. Separations 9:256. https://doi.org/10.3390/separations9090256

    Article  Google Scholar 

  80. Ali H, Muhammad SK (2008) Biosorption of crystal violet from water on leaf biomass of Calotropis procera. Int J Environ Sci Technol 3:143–150. https://scialert.net/abstract/?doi=jest.2008.143.150

    Google Scholar 

  81. Farah JY, El-Gandy NS (2013) Performance, kinetics and equilibrium in biosorption of anionic dye Acid Red 14 by the waste biomass of Saccharomyces cerevisiae as a low-cost biosorbent. Turkish J Eng Environ Sci 37:146–161. https://doi.org/10.3906/MUH-1204-8

    Article  Google Scholar 

  82. Murugesan SR, Sivakumar V, Velusamy S, Ravindiran G, Sundararaj P, Maruthasalam V, Thangavel R, Ramasamy GS, Panneerselvam M, Periyasamy S (2022) Biosorption of malachite green from aqueous phase by tamarind fruit shells using FBR. Adv Mater Sci Eng 2022:8565524. https://doi.org/10.1155/2022/8565524

    Article  Google Scholar 

  83. Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean (Weinh) 36:937–962. https://doi.org/10.1002/clen.200800167

    Article  Google Scholar 

  84. Omokpariola DO (2021) Experimental modelling studies on the removal of crystal violet, methylene blue and malachite green dyes using Theobroma cacao (Cocoa Pod Powder). J Chem Lett 2:9–24. https://doi.org/10.22034/JCHEMLETT.2021.272842.1020

    Article  Google Scholar 

  85. Sharma K, Sharma S, Sharma V, Mishra PK, Ekielski A, Sharma V, Kumar V (2021) Methylene blue dye adsorption from wastewater using hydroxyapatite/gold nanocomposite: kinetic and thermodynamics studies. Nanomaterials 11:1403. https://doi.org/10.3390/nano11061403

    Article  Google Scholar 

  86. Fawzy MA, Gomaa M (2021) Low-cost biosorption of methylene blue and Congo red from single and binary systems using Sargassum latifolium biorefinery waste/wastepaper xerogel: an optimization and modeling study. J Appl Phycol 33:675–691. https://doi.org/10.1007/s10811-020-02290-2

    Article  Google Scholar 

  87. Hamdaoui O, Saoudi F, Chiha M, Naffrechoux E (2008) Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modeling. Chem Eng J 143:73–84. https://doi.org/10.1016/j.cej.2007.12.018

    Article  Google Scholar 

  88. Sun X-F, Wang S-G, Liu X-W, Gong W-X, Bao N, Gao B-Y, Zhang H-Y (2008) Biosorption of malachite green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Bioresour Technol 99:3475–3483. https://doi.org/10.1016/j.biortech.2007.07.055

    Article  Google Scholar 

  89. Oyelude EO, Awudza JAM, Twumasi SK (2018) Removal of malachite green from aqueous solution using pulverized teak leaf litter: equilibrium, kinetic and thermodynamic studies. Chem Cent J 12(81):1–10. https://doi.org/10.1186/s13065-018-0448-8

    Article  Google Scholar 

  90. Ezechi EH, Kutty SRBM, Malakahmad A, Isa MH (2015) Characterization and optimization of effluent dye removal using a new low cost adsorbent: equilibrium, kinetics and thermodynamic study. Process Saf Environ Prot 98:16–32. https://doi.org/10.1016/j.psep.2015.06.006

    Article  Google Scholar 

  91. Rangabhashiyam S, Lata S, Balasubramanian P (2018) Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces 10:197–215. https://doi.org/10.1016/j.surfin.2017.09.011

    Article  Google Scholar 

  92. Roosta M, Ghaedi M, Mohammadi M (2014) Removal of Alzarin red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: optimization by experimental design methodology. Powder Technol 267:134–144. https://doi.org/10.1016/j.powtec.2014.06.052

    Article  Google Scholar 

  93. Wagner SA, Elie A, Eder CL, Betina R, Felipe ES, Jeronimo L, Claudio NA (2012) Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism. Chem Eng J 209:577–588. https://doi.org/10.1016/j.cej.2012.08.053

    Article  Google Scholar 

  94. Sharma YC, Uma (2010) Optimization of parameters for adsorption of methylene blue on a low cost activated carbon. J Chem Eng Data 55:435–439

    Article  Google Scholar 

  95. Ghaedi M, Ansari A, Habibi M, Asghari A (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem 20:17–28. https://doi.org/10.1016/j.jiec.2013.04.031

    Article  Google Scholar 

  96. Gul S, Gul A, Gul H, Khattak R, Ismail M, Khan SU, Khan MS, Aouissi HA, Krauklis A (2023) Removal of brilliant green dye from water using Ficus benghalensis tree leaves as an efficient biosorbent. Materials 16(521):1–15. https://doi.org/10.3390/ma16020521

    Article  Google Scholar 

  97. Batool F, Akbar J, Iqbal S, Noreen S, Bukhari SNA (2018) Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chem Appl 2018:3463724. https://doi.org/10.1155/2018/3463724

    Article  Google Scholar 

  98. Gupta S, Sharma SK, Kumar A (2019) Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Sic Eng 12:27–36. https://doi.org/10.1016/j.wse.2019.04.003

    Article  Google Scholar 

  99. Elmorsi RR, Abou-El-Sherbini KS, El-Dein WAS, Lotfy HR (2022) Activated eco-waste of Posidonia oceanica rhizome as a potential adsorbent of methylene blue from saline water. Biomass Conv Bioref 2022:. https://doi.org/10.1007/s13399-022-02709-5

  100. Demir F, Lacin O, Sincar H (2023) Investigation of biosorption behavior of red-254, a textile waste paint on activated sugar beet pulp. Glob NEST J 25(3):17–26

    Google Scholar 

  101. Kamga FT (2018) Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl Water Sci 9:1. https://doi.org/10.1007/s13201-018-0879-3

    Article  Google Scholar 

  102. Li J, Hitch M (2015) Carbon dioxide sorption isotherm study on pristine and acid-treated olivine and its application in the vacuum swing adsorption process. Minerals 5:259–275

    Article  Google Scholar 

  103. Hamad MTMH (2023) Optimization study of the adsorption of malachite green removal by MgO nano-composite, nano-bentonite and fungal immobilization on active carbon using response surface methodology and kinetic study. Environ Sci Eur 35:26. https://doi.org/10.1186/s12302-023-00728-1

    Article  Google Scholar 

  104. Gündüz F, Bayrak B (2017) Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J Mol Liq 243:790–798

    Article  Google Scholar 

  105. Victor OS, Kowenje CO, Kengara FO (2018) Errors in parameters estimation using linearized adsorption isotherms: sulfadimethoxine adsorption onto kaolinite clay. Chem Sci Int J 23(4):1–6. https://doi.org/10.9734/CSJI/2018/44087. (CSIJ.44087)

    Article  Google Scholar 

  106. Eldin MSM, Aly KM, Khan ZA, Mekky AEM, Saleh TS, Al-Bogami AS (2016) Removal of methylene blue from synthetic aqueous solutions with novel phosphoric acid-doped pyrazole-g-poly(glycidyl methacrylate) particles: kinetic and equilibrium studies. Des Water Treat 57(56):27243–27258. https://doi.org/10.1080/19443994.2016.1171168

    Article  Google Scholar 

  107. Erattemparambil K, Mohan L, Gnanasundaram N, Krishnamoorthy R (2023) Insights into adsorption theory of phenol removal using a circulating fluidized bed system. Arabian J Chem 16(6):104750. https://doi.org/10.1016/j.arabjc.2023.104750

    Article  Google Scholar 

  108. Samimi M, Zakeri M, Alobaid F, Aghel B (2023) A brief review of recent results in arsenic adsorption process from aquatic environments by metal-organic frameworks: classification based on kinetics, isotherms and thermodynamics behaviors. Nanomaterials 13:60. https://doi.org/10.3390/nano13010060

    Article  Google Scholar 

  109. Perez-Osorio G, Hernandez-Ggomez FDR, Arriola-Morales J, Castillo-Morales M, Mendoza-Hernandez JC (2020) Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process. Turk J Chem 44:180–193

    Article  Google Scholar 

  110. Samimi M, Moeini S (2020) Optimization of the Ba+2 uptake in the formation process of hydrogels using central composite design: kinetics and thermodynamic studies of malachite green removal by Baalginate particles. J Part Sci Technol 6(2):95–102

    Google Scholar 

  111. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  112. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  113. Lemos ES, Fiorentini EF, Adrián Bonilla-Petriciolet A, Escudero LB (2023) Malachite green removal by grape stalks biosorption from natural waters and effluents. Adsorpt Sci Technol 2023:6695937. https://doi.org/10.1155/2023/6695937

    Article  Google Scholar 

  114. Bonyadi Z, Nasoudari E, Ameri M, Ghavami V, Shams M, Sillanpa M (2022) Biosorption of malachite green dye over Spirulina platensis mass: process modeling, factors optimization, kinetic, and isotherm studies. Appl Water Sci 12:1–11. https://doi.org/10.1007/s13201-022-01690-8

    Article  Google Scholar 

  115. Rasoulpoor K, Marjani AP, Nozad E (2020) Competitive chemisorption and physisorption processes of a walnut shell based semi-IPN bio-composite adsorbent for lead ion removal from water: equilibrium, kinetic and thermodynamic studies. Environ Tech Innov 20:101133. https://doi.org/10.1016/j.eti.2020.101133

    Article  Google Scholar 

  116. Sahoo TR, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In: Bonelli B, Freyria FS, Rossetti I, Sethi R (2020) Nanomaterials for the detection and removal of wastewater pollutants. Micro and Nano Technologies. Elsevier, pp 161–222. https://doi.org/10.1016/B978-0-12-818489-9.00007-4

  117. Rangabhashiyam S, Anu N, Nandagopal Giri MS, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural by-products. J Environ Chem Eng 2(1):398–414

    Article  Google Scholar 

  118. Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookeri fruit epicarp. Water Resour Ind 15:14–27. https://doi.org/10.1016/j.wri.2016.06.001

    Article  Google Scholar 

  119. Li P, Wu J (2019) Sustainable living with risks: meeting the challenges. Hum Ecol Risk Assess 25:1–10. https://doi.org/10.1080/10807039.2019.1584030

    Article  Google Scholar 

  120. Li P (2020) To make the water safer. Expo Health 12:337–342. https://doi.org/10.1007/s12403-020-00370-9

    Article  Google Scholar 

  121. Santhi T, Manonmani S, Vasantha V, Chang Y (2016) A new alternative adsorbent for the removal of cationic dyes from aqueous solution. Arab J Chem 9:466–474

    Article  Google Scholar 

  122. Neha G, Kushwaha AK, Chattopadhyaya M (2011) Kinetics and thermodynamics of malachite green adsorption on banana pseudostem fbers. J Chem Pharm Res 3(1):284–296

    Google Scholar 

  123. Bashanaini SM (2019) Removal of malachite green dye from aqueous solution by adsorption using modified and unmodified local agriculture waste. Sci J Anal Chem 7(2):42

    Article  Google Scholar 

  124. Ng HW, Lee LY, Chan WL, Gan S, Chemmangattuvalappil N (2016) Luffa acutangula peel as an effective natural biosorbent for malachite green removal in aqueous media: equilibrium, kinetic and thermodynamic investigations. Desalination Water Treat 57(16):7302–7311

    Article  Google Scholar 

  125. Bayramoglu G, Celik G, Arica MY (2006) Biosorption of reactive blue 4 dye by native and treated fungus Phanerochaete chrysosporium: batch and continuous flow system studies. J Hazard Mater 137:1689–1697. https://doi.org/10.1016/j.jhazmat.2006.05.005

    Article  Google Scholar 

  126. Muinde VM, Onyari JM, Wamalwa B, Wabomba J, Nthumbi RM (2017) Adsorption of malachite green from aqueous solutions onto rice husks: kinetic and equilibrium studies. J Environ Prot 8:215–230. https://doi.org/10.4236/jep.2017.83017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amit Kumar and Ashu Tyagi collected the relevant literature and finalized the experiment with Dr. Sanjay Kumar. The initial draft of the paper was completed by Prof. M.U. Charaya. Thereafter, Raj Singh improved the manuscript by adding the current reports and performed multiple proof editing of the manuscript as corresponding author. All the authors jointly approved the final version of the manuscript.

Corresponding author

Correspondence to Raj Singh.

Ethics declarations

Ethical approval

There are no ethical issues in this manuscript.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Tyagi, A., Kumar, S. et al. An invasive plant Ageratum houstonianum L. as an adsorbent for the removal of triphenylmethane dye (malachite green): isotherm, kinetics, and thermodynamic studies. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04850-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04850-1

Keywords

Navigation