Skip to main content
Log in

Total Phosphorous Distribution and Bioavailability in the Bed Sediments of an Atlantic Basin (Galicia, NW Spain): Spatial Distribution and Vertical Profiles

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The Anllóns basin (NW Spain) has been included in the Natura 2000 Network and declared as Site of Community Importance. The main contamination problems of the basin come from a former gold mine and from agricultural activities, which influence the quality of the sediment–water system. Phosphorus (P) enrichment in the bed sediments was evaluated by analyzing P in the pore waters, in the surface bed sediments, and in the vertical sediment profiles, including both total and bioavailable forms. Two granulometric fractions (<2 mm and <63 μm) were evaluated. Pore waters, bed sediments, and vertical profiles showed high percentages of the bioavailable P fraction with respect to the total P content, which evidences the potential risk of pollution which suppose the bed sediments of the Anllóns River. The vertical profiles showed P enrichment in the superficial layers, which could be the consequence of the increased use of fertilizers in the last decades. With regards to the granulometric distributions, the <63 μm showed, in general, higher P concentrations than the <2 mm fraction. However, at the sampling points most heavily contaminated, the concentration of both fractions becomes similar, thus indicating that, at these sites, the coatings formed over sands can retain important P concentrations in the bed sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boixet, L., Gleeson, C. F., & García, J. (2007). The Corcoesto Gold Deposit. 23rd Int. Applied Geochemistry Symp. (IAGS 2007) Congress Proc., Oviedo, 14–19 June.

  • Boström, B., Persson, G., & Broberg, B. (1988). Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia, 170(1), 133–155.

    Google Scholar 

  • Bowes, M., & House, W. (2001). Phosphorus and dissolved silicon dynamics in the river Swale catchment, UK: a mass-balance approach. Hydrological Processes, 15, 261–280. doi:10.1002/hyp.157.

    Article  Google Scholar 

  • Caraco, N., Cole, J., & Likens, G. (1990). A comparison of phosphorous immobilization in sediments of freshwater and coastal marine waters systems. Biogeochemistry, 9(3), 277–290. doi:10.1007/BF00000602.

    Article  CAS  Google Scholar 

  • Chen, B., Hulston, J., & Beckett, R. (2000). The effect of surface coatings on the association of orthophosphate with natural colloids. The Science of the Total Environment, 263, 23–35. doi:10.1016/S0048-9697(00)00607-0.

    Article  CAS  Google Scholar 

  • Cooke, G., & Williams, R. (1973). Phosphorous: fertilizers and farming. The phosphorous involved in agricultural systems and possibilities of its movement into natural. In S. Jenkins, & K. Ives (Eds.), Progress in water technology. Phosphorous in fresh water and the marine environment (pp. 19–33, 2nd ed.). Oxford: Pergamon.

    Google Scholar 

  • Decree 72/2004, relative to the Areas of Special Protection of the Natural Resources of Galicia (in Spanish). Galician Official Bulletin (DOG) 69, April 12.

  • Devesa-Rey, R., Moldes, A. B., Díaz-Fierros, F., & Barral, M. T. (2008). Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environmental Monitoring and Assessment. doi:10.1007/s10661-008-0345-z.

  • Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F., & Barral, M. T. (2008b). Fractionation and bioavailability of Arsenic in the bed sediments of the Anllóns River (NW Spain). Water, Air, and Soil Pollution, 195(1–4), 189–199.

    Article  CAS  Google Scholar 

  • Dorich, R., Nelson, D., & Sommers, L. (1980). Algal availability of sediment phosphorous in drainage water of the Black Creek Watershed. Journal of Environmental Quality, 9, 557–563.

    CAS  Google Scholar 

  • Dorich, R. A., Nelson, D. W., & Sommers, L. E. (1985). Estimating algal available phosphorus in suspended sediments by chemical extraction. Journal of Environmental Quality, 14(3), 400–405.

    CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. (1983). Metal pollution in the aquatic environment (2nd ed.). Berlin: Springer.

    Google Scholar 

  • García-Rodeja, E. (1994). Phosphorus desorption in Galician soils and its relation with risk of water contamination (in Spanish). Ph.D. thesis, Santiago de Compostela University.

  • Gardolinski, P., Worsfold, P., & McKelvie, I. (2004). Seawater induced release and transformation of organic and inorganic phosphorus from river sediments. Water Research, 38, 688–692. doi:10.1016/j.watres.2003.10.048.

    Article  CAS  Google Scholar 

  • Garmendia, J. M., Parada, J. M., & Mora, J. (2003). Dominance patterns of macrobenthic faunal groups at different depth levels in the sublittoral sandy marine sediments of the Ria de Ares y Betanzos (Galicia, northwest Iberian Peninsula). Boletín del Instituto Español de Oceanografía, 19(1–4), 283–291.

    Google Scholar 

  • Guitián, F., & Carballas, T. (1976). Técnicas de Análisis de Suelos. Santiago de Compostela: Pico Sacro Ed.

    Google Scholar 

  • Gunatilaka, A., Herodek, S., Istanovics, V., & Dobolyi, E. (1988). Biological availability of sediment phosphorous. In: Sediment Phosphorous Group: working group summaries and proposals for future research. Archives für hydrobiology Beih. Ergebn. limnologischem, 30, 83–112.

    Google Scholar 

  • Holdren Jr., G. C., & Armstrong, D. E. (1980). Factors affecting phosphorus release from intact lake sediment cores. American Chemical Society, 14(1), 79–87.

    Google Scholar 

  • Horowitz, A. (1991). A primer on sediment-trace element chemistry. Boca Raton: Lewis.

    Google Scholar 

  • House, W., Denison, F., Jickells, T., Praska, K., & Edwards, A. (1998). Reactions of phosphorous with sediments in fresh and marine waters. Soil Use and Management, 14, 139–146. doi:10.1111/j.1475-2743.1998.tb00632.x.

    Article  Google Scholar 

  • Iglesias, M. L., Devesa-Rey, R., Pérez, R., Díaz-Fierros, F., & Barral, M. T. (2008). Phosphorus mobility in a fluvial basin: study of the Anllóns River. Madrid: Proceedings of the I Conference of Earth Science Research.

  • Lamb, A. L., Wilson, G. P., & Leng, M. P. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Science Reviews, 75, 29–57. doi:10.1016/j.earscirev.2005.10.003.

    Article  CAS  Google Scholar 

  • Maidment, D. (1992). Handbook of hydrology. New York: McGraw Hill.

    Google Scholar 

  • Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers—ecology and management. The Science of the Total Environment, 282–283, 25–47.

    Article  Google Scholar 

  • Mendiguchía, C., Moreno, C., Mánuel-Vez, M., & García-Vargas, M. (2005). Preliminary investigation on the enrichment of heavy metals in marine sediments originated from intensive aquaculture effluents. Aquaculture (Amsterdam, Netherlands), 254(1–4), 317–325. doi:10.1016/j.aquaculture.2005.10.049.

    Google Scholar 

  • Moreira-Turcq, P., Jouanneau, J. M., Turcq, B., Seyler, P., Weber, O., & Guyot, J. L. (2004). Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeography, Palaeoclimatology, Palaeoecology, 214(1–2), 27–40.

    Google Scholar 

  • Murphy, J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. doi::10.1016/S0003-2670(00)88444-5.

    Article  CAS  Google Scholar 

  • Nash, D., & Halliwell, D. (2000). Tracing phosphorous transferred from grazing land to water. Water Research, 34(7), 1975–1985. doi:10.1016/S0043-1354(99)00359-0.

    Article  CAS  Google Scholar 

  • Owens, P., & Walling, D. (2002). The phosphorous content of fluvial sediment in rural and industrialized river basins. Water Research, 36, 685–701. doi:10.1016/S0043-1354(01)00247-0.

    Article  CAS  Google Scholar 

  • Pennifold, M., & Davis, J. (2001). Macrofauna and nutrient cycling in the Swan River Estuary, Western Australia: experimental results. Hydrological Processes, 15, 2537–2553. doi:10.1002/hyp.294.

    Article  Google Scholar 

  • Persaud, D., Jaagumagui, R., & Hayton, A. (1993). Guidelines for the protection and management on aquatic sediment quality in Ontario. Ontario: Ontario Ministry of the Environment and Energy.

    Google Scholar 

  • RCL 1986/3023, October 1st. Conservation of the wild life and natural resources in Europe.

  • RD 439/1990, March 30th. National Catalogue of Endangered Species (in Spanish), State Official Bulletin (BOE) 82 (April, 4, 1990).

  • Rivas, Z., De Medina, H. L., Gutiérrez, J., & Gutiérrez, E. (2000). Nitrogen and phosphorus levels in sediments from tropical Catatumbo river (Venezuela). Water, Air, and Soil Pollution, 117(1–4), 27–37. doi:10.1023/A:1005189710803.

    Article  CAS  Google Scholar 

  • Rubinos, D., Barral, M. T., Ruiz, B., Ruiz, M., Rial, M. E., Alvarez, M., et al. (2003). Phosphate and arsenate retention in sediments of the Anllons River (northwest Spain). Water Science and Technology, 48(10), 159–166.

    CAS  Google Scholar 

  • Sagher, A. (1976). Availability of soil runoff phosphorous to algae. Ph.D. diss. Univ. Wisconsin, Madison, WI (Diss. Abstr. 76-29, 935).

  • Sahu, M. K., Sivakumar, K., Thangaradjou, T., & Kannan, L. (2007). Phosphate solubilizing actinomycetes in the estuarine environment: an inventory. Journal of Environmental Biology, 28(4), 795–798.

    CAS  Google Scholar 

  • Schmidt, S., Gonzalez, J.-L., Lecroart, P., Tronczynski, J., Billy, I., & Jouanneau, J.-M. (2007). Bioturbation at the water–sediment interface of the Thau Lagoon: impact of the shellfish farming. Aquatic Living Resources, 20, 163–169. doi:10.1051/alr:2007027.

    Article  Google Scholar 

  • Turner, A., Millward, G., & Le Roux, S. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88, 179–192. doi:10.1016/j.marchem.2004.03.008.

    Article  CAS  Google Scholar 

  • Taylor, A., & Kunishi, H. (1971). Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. Journal of Agronomy and Food Chemistry, 19(5), 827–831. doi:10.1021/jf60177a061.

    Article  Google Scholar 

  • Tusseau-Villemin, M. (2001). Do food processing industries contribute to the eutrophication of aquatic systems. Ecotoxicology and Environmental Safety, 50, 143–152. doi:10.1006/eesa.2001.2083.

    Article  CAS  Google Scholar 

  • Vaalgamaa, S., & Conley, D. J. (2008). Detecting environmental changes in estuaries: nutrient and heavy metal distribution in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 76, 45–56. doi:10.1016/j.ecss.2007.06.007.

    Article  Google Scholar 

  • Wang, H., Appan, A., & Gulliver, J. S. (2003). Modeling of phosphorus dynamics in aquatic sediments: I—Model development. Water Research, 37(16), 3928–3938. doi:10.1016/S0043-1354(03)00304-X.

    Article  CAS  Google Scholar 

  • Wolf, A., Baker, D., Pionke, H., & Kunishi, H. (1985). Soil tests for estimating labile, soluble, and algae-available phosphorus in agricultural soils. Journal of Environmental Quality, 14(3), 341–404.

    Article  Google Scholar 

  • Wu, Y., Lücke, A., & Wang, S. (2008). Assessment of nutrient sources and paleoproductivity during the last century in Longgan Lake, middle reaches of the Yangtze River, China. Journal of Paleolimnology, 39(4), 451–462. doi:10.1007/s10933-007-9123-0.

    Article  Google Scholar 

  • Zepp, R. (1987). Environmental photoprocesses involving natural organic matter. In F. Frimmel, & R. Christman (Eds.), Humic substances and their role in the environment. Chichester: Wiley.

    Google Scholar 

  • Zhang, H., & Shan, B. (2008). Historical distribution and partitioning of phosphorus in sediments rich in an agricultural watershed in the Yangtze–Huaihe Region, China. Environmental Science & Technology, 42(7), 2328–2333. doi:10.1021/es0720208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financed by the Science and Education Ministry of Spain (MEC, REN 2003-08673/BES-2004-5894). Rosa Devesa-Rey was granted with a FPI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devesa-Rey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devesa-Rey, R., Iglesias, M.L., Díaz-Fierros, F. et al. Total Phosphorous Distribution and Bioavailability in the Bed Sediments of an Atlantic Basin (Galicia, NW Spain): Spatial Distribution and Vertical Profiles. Water Air Soil Pollut 200, 341–352 (2009). https://doi.org/10.1007/s11270-008-9917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9917-3

Keywords

Navigation