Skip to main content
Log in

Internal phosphorus load in a Mexican reservoir through sediment speciation analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Since the sequential extraction of phosphorus (P) in sediment makes it possible to determine the P potentially available for release, in this paper, we evaluate the fractions of P in sediment profiles from Valle de Bravo reservoir, a eutrophic lake in central Mexico to determine the contributions of each fraction to the internal P load (IPL). The P fractionation scheme employs sequential extractions of sediment with O2-free water (MilliQ), bicarbonate-dithionite (BD), sodium hydroxide (NaOH), hydrochloric acid (HCl), and potassium persulfate (K2S2O8-) to obtain five P fractions. A monitoring of redox potential (Eh), pH, and total phosphorus (TP) in the bottom water of the reservoir indicated variations of these parameters during the year, observing that as Eh decreased, the P concentration increased, it was also observed that when increasing pH, P concentration also increased. Analyzing the behavior of fractions of P in sediment profiles, we found that the dominant fractions are those bound to iron and aluminum oxides, corresponding to approximately 50% of total P since P concentrations of these fractions were twice as high in the top 5 cm of the sediment profiles and decreased with increasing depth. Considering the variations of Eh and pH in the bottom water of the reservoir and that these parameters are factors that control the release of P with the fractions of P bound to Fe/Mn and Al/Fe oxides, we concluded that these fractions contribute most to P potentially available for release in the reservoir, representing a possible IPL of 23.5 ± 1.4 t/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA (American Public Health Association, 2005) Standard methods for examination of water and wastewater. Methods: 4500-P and 10200 H Chlorofyll, 21st ed. Washington, DC

  • Chowdhury M, Bakri DA (2006) Diffusive nutrient flux at the sediment-water interface in Suma Park reservoir, Australia. Hydrol Sci-Journal-des Sciences Hydrologiques 51(1):144–156

    Article  CAS  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) Restoration and management of lakes and reservoirs, 5th edn. Taylor and Francis Group, New York

    Google Scholar 

  • Haggard BE, Moore PA, De Laune PB (2005) Phosphorus flux from bottom sediments in Lake Eucha Oklahoma. J Environ Qual 34:724–728

    Article  CAS  Google Scholar 

  • Hansen AM, Márquez-Pacheco H (2015) Internal phosphorus load in a Mexican reservoir: forecast and validation. Environ Toxicol Chem 34(11):2583–2589

    Article  CAS  Google Scholar 

  • Heggie DT, Logan GA, Smith CS, Fredericks DJ, Palmer D (2008) Biogeochemical processes at the sediment–water interface, Bombah Broadwater, Myall Lakes. Hydrobiologia 608:49–67

    Article  CAS  Google Scholar 

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática 2010) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Valle de Bravo, México, Clave geoestadística 15110, IOP publishing inegi. http://www3.inegi.org.mx/sistemas/mexicocifras/datos-geograficos/15/15110.pdf. Accessed May 2016

  • Jensen H, Kristensen P, Jeppesen E, Skytthe A (1992) Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236(1):731–743

    Article  Google Scholar 

  • Kim LH, Choi E, Stenstrom MK (2003) Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50:53–61

    Article  CAS  Google Scholar 

  • Márquez-Pacheco H, Hansen AM, Falcón-Rojas A (2013) Phosphorous control in a eutrophied reservoir. Environ Sci Pollut Res 20(12):8446–8456

    Article  Google Scholar 

  • Miao S, De Laune RD, Jugsujinda A (2006) Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci Total Environ 371(1–3):334–343

    Article  CAS  Google Scholar 

  • Ostrofsky ML (2012) Differential post-depositional mobility of phosphorus species in lake sediments. J Paleolimnol 48:559–569

    Article  Google Scholar 

  • Perrone U, Facchinelli A, Sacchi E (2008) Phosphorus dynamics in a small eutrophic Italian Lake. Water Air Soil Pollut 189:335–351

    Article  CAS  Google Scholar 

  • Psenner R, Puesko R, Sager M (1984) Die Fractionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten - Versuch einer Definition Okologisch Wichtiger Fractionen. Arch Hydrobiol 10:115–155

    Google Scholar 

  • Schauser I, Lewandowski J, Hupfer M (2003) Decision support for the selection of an appropriate in-lake measure to influence the phosphorus retention in sediments. Water Res 37:801–812

    Article  CAS  Google Scholar 

  • Solim SU, Wanganeo A (2009) Factors influencing release of phosphorus from sediments in a high productive polymictic lake system. Water Sci Technol 60(4):1013–1023

    Article  CAS  Google Scholar 

  • Søndergaard M (2007) Nutrient dynamics in lakes—with emphasis on phosphorus, sediment and lake restoration. University of Aarhus, Denmark, Doctor’s dissertation (DSc). 74 P. And 16 associated papers

  • Steinman A, Ogdahl M (2008) Ecological effects after an alum treatment in spring Lake Michigan. J Environ Qual 37:22–29

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency 2001) Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical manual. EPA-823-B-01-002. Washington, DC

  • Villanueva-Beltrán JT (2011) Evaluación de la carga externa de fósforo y nitrógeno en la Presa Valle de Bravo y propuesta de solución. MSc thesis, Posgrado de Ingeniería (Ambiental), Mexican National Autonomous University, México, UNAM, 134 p

  • Wang S, Jin X, Zhao H, Wu F (2006) Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China. Colloids Surf A Physicochem Eng Asp 273:109–116

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnological analyses. Springer-Verlag, New York

    Book  Google Scholar 

  • Xiangcan J, Shengrui W, Yan P, Feng CW (2006) Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ Pollut 139(2):288–295. https://doi.org/10.1016/j.envpol.2005.05.010

    Article  Google Scholar 

  • Yalçin S, Demirak A, Keskin F (2012) Phosphorus fractions and its potential release in the sediments of Koycegiz Lake Turkey. Lakes Reserv Ponds 6:139–153

    Google Scholar 

  • Zhou Q, Gibson CE, Zhu Y (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in china and UK. Chemosphere 42:221–225

    Article  CAS  Google Scholar 

  • Zhu M, Zhu G, Li W, Zhang Y, Zhao L, Gu Z (2013) Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ Pollut 173:216–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Organismo de Cuenca Aguas del Valle de México from the Mexican National Water Commission (CONAGUA) for financial support (contract no. OAVM-DT-MEX-11-479-RF-CC), the technical support from P. van Goethem and N. Traill from Phoslock Europe, S. Yasseri from Institut Dr. Nowak, Germany, and A. Falcón-Rojas and C. Corzo-Juárez form the Mexican Institute of Water Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Márquez-Pacheco.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez-Pacheco, H., Hansen, A.M. Internal phosphorus load in a Mexican reservoir through sediment speciation analysis. Environ Sci Pollut Res 24, 24947–24952 (2017). https://doi.org/10.1007/s11356-017-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0148-2

Keywords

Navigation