Skip to main content
Log in

Heavy Metals in Mycorrhizal Rhizospheres Contaminated By Zn–Pb Mining and Smelting Around Olkusz in Southern Poland

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Soils in areas of mining and smelting of Pb–Zn ores in Southern Poland are strongly enriched in heavy metals (Zn, Pb, Fe, Cd, Tl, As). The highest concentrations of Zn (<55,506 mg kg−1), Pb (<8,262 mg kg−1), Cd (<220 mg kg−1) and Tl (<67 mg kg−1) are linked to the fine fractions of upper soil layers in sites contaminated by past exploitation and processing of ores. The high stress of metals, and the negative influence of acid waste drainage has limited the development of flora and fauna in these areas. The increasing ability of plants to grow is due to the positive symbiotic action of fungi and bacteria. The mycorrhizal communities were identified in rhizospheres rich in unstable Zn–Pb–Fe sulphides such as sphalerite, galena, pyrite and marcasite and carbonates of Zn (smithsonite) and Pb (cerussite). They occur in associations with sulphates, e.g., gypsum. In parts of fungi, secondary mineral phases containing Zn, Pb, Fe and Mn occur. Metal-bearing aggregates formed during symbiotic action between myccorhiza and bacteria connected with them. They enhance the binding of bio-available ions of Zn, Pb and Mn in the most unstable phases. Metal contents in the mycorrhizal parts of the rhizospheric soils were determined by Atomic Absorption Spectroscopy. Mineralogical investigations involved X-ray diffraction, scanning electron microscopy with energy dispersive spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baxter, J. W., & Dighton, J. (2005). Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza, 15, 513–523. doi:10.1007/s00572-005-0359-0.

    Article  CAS  Google Scholar 

  • Cabala, J. (1996). Concentrations of trace elements in Zn–Pb ores and possibilities of their transfer to waste deposits. Prace Naukowe GIG, 13, 17–32 (in Polish with English summary).

    Google Scholar 

  • Cabala, J. (2001). Development of oxidation in Zn–Pb deposits in Olkusz area. In A. Piestrzyński et al. (Ed.), Mineral deposits at the beginning of the 21st century (pp. 121–124). Lisse: Balkema.

    Google Scholar 

  • Cabala, J., & Teper, L. (2007). Metalliferous constituents of rhizosphere soils contaminated by Zn–Pb mining in southern Poland. Water, Air, and Soil Pollution, 178, 1–4 351–362. doi:10.1007/s11270-006-9203-1.

    Article  Google Scholar 

  • Cabala, J., Teper, E., Teper, L., Małkowski, E., & Rostański, A. (2004). Mineral composition in rhizosphere of plants grown in the vicinity of a Zn–Pb ore flotation tailings pond. Preliminary Study. Acta Biologica Cracoviensia. Series; Botanica, 46, 65–74.

    Google Scholar 

  • Conn, C., & Dighton, J. (2000). Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology & Biochemistry, 32, 89–496. doi:10.1016/S0038-0717(99)00178-9.

    Article  Google Scholar 

  • Courchesne, F., & Gobran, G. R. (1997). Mineralogical variations of bulk and rhizosphere soils from a Norway spruce stand. Soil Science Society of America Journal, 61(4), 1245–1249.

    CAS  Google Scholar 

  • Duponnois, R., & Pienchette, C. (2003). A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza, 13, 85–91.

    CAS  Google Scholar 

  • Ernst, W. H. (1996). Schwermetalle. In C. Brunold, A. Rüegesegger, & R. Brändle (Eds.), Stress bei Pflanzen. Wissenschaft (pp. 191–220). Stuttgart: Verlag Paul Haupt.

    Google Scholar 

  • Frey, B., Zierold, K., & Brunner, I. (2000). Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungalmantle of Picea abies Hebeloma crustuliniforme ectomycorrhizas. Plant, Cell & Environment, 23(11), 1257–1265. doi:10.1046/j.1365-3040.2000.00637.x.

    Article  CAS  Google Scholar 

  • Galli, U., Schuepp, H., & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–368. doi:10.1111/j.1399-3054.1994.tb05349.x.

    Article  CAS  Google Scholar 

  • Godbold, D. L., Jentschke, G., Winter, S., & Marschner, P. (1998). Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere, 36, 757–762. doi:10.1016/S0045-6535(97)10120-5.

    Article  CAS  Google Scholar 

  • Hees, P., Jones, D. L., Jentschke, G., & Godbold, D. L. (2005). Organic acid concentrations in soil solution: Effects of young coniferous trees and ectomycorrhizal fungi. Soil Biology & Biochemistry, 37, 771–776. doi:10.1016/j.soilbio.2004.10.009.

    Article  Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168, 293–303. doi:10.1111/j.1469-8137.2005.01512.x.

    Article  CAS  Google Scholar 

  • Jentschke, G., & Godbold, D. (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109(2), 107–116. doi:10.1034/j.1399-3054.2000.100201.x.

    Article  CAS  Google Scholar 

  • Juste, C. (1988). Appreciation de la mobilité et de la biodisponbilité des éléments en trace du sol. Science du Sol, 26, 103–112.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1999). Trace metals biogeochemistry. Warsaw, PWN, 2 Edit. (pp. 398, in Polish).

  • Kozdrój, J., Piotrowska-Seget, Z., & Krupa, P. (2007). Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology (London, England), 16, 449–456. doi:10.1007/s10646-007-0149-x.

    Google Scholar 

  • Krupa, P. (2004). Ectomycorrhises and their significance for the trees growing in place polluted with heavy metals. (p. 92). Katowice: University of Silesia Publ. (in Polish with English summary).

  • Krupa, P., & Kozdrój, J. (2007). Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated Pine (Pinus sylvestris L) seedlings. Water, Air, and Soil Pollution, 182, 83–90. doi:10.1007/s11270-006-9323-7.

    Article  CAS  Google Scholar 

  • Krzaklewski, W., & Pietrzykowski, M. (2002). Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water, Air, and Soil Pollution, 141, 125–142. doi:10.1023/A:1021302725532.

    Article  CAS  Google Scholar 

  • Leach, D. L., Viets, J. G., Kozlowski, A., & Kibitlewski, S. (1996). Geology, geochemistry, and genesis of the Silesia–Cracow zinc–lead district, southern Poland. Society of Economic Geologists. Special Publication, 4, 171–181.

    Google Scholar 

  • Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153. doi:10.1007/s005720050174.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706. doi:10.1016/S0883-2927(01)00065-8.

    Article  CAS  Google Scholar 

  • Lis, J., & Pasieczna, A. (1997). Pb–Zn–Cd geochemical anomalies in soil of Upper Silesia. Przegląd Geologiczny, 2(45), 182–189 (in Polish, with English summary).

    Google Scholar 

  • Lis, J., & Pasieczna, A. (1999). Detailed geochemical map of Upper Silesia 1:25000. Pilot sheet Sławków. Polish Geological Institute, Warsaw.

  • Mayer, W., Sass-Gustkiewicz, M., Góralski, M., Sutley, S., & Leach, D. L. (2001). Relationship between the oxidation zone of Zn–Pb sulphide ores and soil contamination in the Olkusz ore district (Upper Silesia, Poland). In A. Piestrzyński, et al. (Ed.), Mineral deposits at the beginning of the 21st century (pp. 165–168). Lisse: Balkema.

    Google Scholar 

  • Read, D. J. (2002). Towards ecological relevance–progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature (Ecological studies, 157). In M. G. A. van der Heiden, and I.R. Sanders (Eds.). Mycorrhizal ecology (pp. 3–24). Berlin: Springer.

  • Roberts, D. R., Scheinost, A. C., & Sparks, D. L. (2002). Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Environmental Science & Technology, 36, 1742–1750. doi:10.1021/es015516c.

    Article  CAS  Google Scholar 

  • Sommer, P., Burgera, G., Wieshammer, G., Wenzel, W. W., & Strauß, J. (2001). Effects of mycorrhizal associations on the metal uptake by willows from polluted soils: Implication for soil by phytoextraction. Leben und Überleben – Konzepte für die Zukunft. BOKU Wien, 18.–21. Nov. Open file access 2007 http://www.rhizo.at/download.asp?id=690.

  • Trafas, M. (1996). Changes in the properties of post-flotation wastes due to vegetation introduced during process of reclamation. Applied Geochemistry, 11, 181–185. doi:10.1016/0883-2927(95)00062-3.

    Article  CAS  Google Scholar 

  • Turnau, K., Jurkiewicz, A., Lingua, G., Barea, J. M., & Gianinazzi-Pearson, V. (2005). Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In M. N. V. Prasad, K. S. Sajwan, & R. Naidu (Eds.), Trace elements in the environment (pp. 229–246). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Verner, J. F., Ramsey, M. H., Helios-Rybicka, E., & Jędrzejczyk, B. (1996). Heavy metal contamination of soils around a Pb–Zn smelter in Bukowno, Poland. Applied Geochemistry, 11, 11–16. doi:10.1016/0883-2927(95)00093-3.

    Article  CAS  Google Scholar 

  • Wierzbicka, M., & Rostański, A. (2002). Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Biologica Cracoviensia. Series; Botanica, 44, 7–19.

    Google Scholar 

  • Wilkinson, D. M., & Dickinson, N. M. (1995). Metal resistance in trees: the role of mycorrhizae. Oikos, 72, 298–300. doi:10.2307/3546233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cabala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabala, J., Krupa, P. & Misz-Kennan, M. Heavy Metals in Mycorrhizal Rhizospheres Contaminated By Zn–Pb Mining and Smelting Around Olkusz in Southern Poland. Water Air Soil Pollut 199, 139–149 (2009). https://doi.org/10.1007/s11270-008-9866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9866-x

Keywords

Navigation