Skip to main content

Advertisement

Log in

Impact of Elevated O3 on Soil Microbial Community Function Under Wheat Crop

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study was initiated to explore the effects of ozone (O3) exposure on potted wheat roots and soil microbial community function. Three treatments were performed: (1) Air with daily averaged O3 concentration of 4–10 ppb (control situation, CK), (2) Air plus 8 h averaged O3 concentration of 76.1 ppb (O3-1), and (3) Air plus 8 h averaged O3 concentration of 118.8 ppb (O3-2). In treatments with elevated O3 concentration (O3-1 and O3-2), the root and shoot biomass were reduced by 25% and 18%, respectively, compared to the control treatment (CK). On the other hand, root activity was significantly reduced by 58% and 90.8% in the O3-1 and O3-2 treatments, respectively, compared to CK. The soil microbial biomass was significantly reduced only in the highest O3 concentration (O3-2 treatment) in the rhizosphere soil. Soil microbial community composition was assessed under O3 stress based on the changes in the sole carbon source utilization profiles of soil microbial communities using the Biolog™ system. Principal component analysis showed that there was significant discrimination in the sole-carbon source utilization pattern of soil microbial communities among the O3 treatments in rhizosphere soil; however, there was none in the bulk soil. In rhizosphere soil, the functional richness of the soil microbial community was reduced by 27% and 38% in O3-1 and O3-2 treatments, respectively, compared to CK. O3-2 treatment remarkably decreased the Shannon diversity index of soil microbial community function in rhizosphere soil, but the O3-1 treatment did not. In the dominant microorganisms using carbon sources of carbohydrates and amino acids groups were significantly reduced by an elevated O3 concentration in the rhizosphere soil. Our study shows that the elevated ozone levels may alter microbial community function in rhizosphere soil but not in the bulk soil. Hence, this suggests that O3 effects on soil microbes are caused by O3 detriments on the plant, but not by the O3 direct effects on the soil microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen, C. P. (2003). Source–sink balance and carbon allocation below ground in plants exposed to ozone. The New Phytologist, 157, 213–228. doi:10.1046/j.1469-8137.2003.00674.x.

    Article  CAS  Google Scholar 

  • Andersen, C. P., & Rygiewicz, P. T. (1995). Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. The New Phytologist, 131, 471–480. doi:10.1111/j.1469-8137.1995.tb03084.x.

    Article  CAS  Google Scholar 

  • Ariyaphanphitak, W., Chidthaisong, A., & Sarobol, E. (2005). Effects of elevated ozone concentrations on Thai jasmine rice cultivars (Oryza sativa L.). Water, Air, and Soil Pollution, 167, 179–200. doi:10.1007/s11270-005-8650-4.

    Article  CAS  Google Scholar 

  • Bardgett, D., Lovell, R. D., Hobbs, P. J., & Jarvis, S. C. (1999). Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 31, 1021–1030. doi:10.1016/S0038-0717(99)00016-4.

    Article  CAS  Google Scholar 

  • Benizri, E., & Amiaud, B. (2005). Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology & Biochemistry, 37(11), 2055–2064. doi:10.1016/j.soilbio.2005.03.008.

    Article  CAS  Google Scholar 

  • Blum, U., & Tingey, D. T. (1977). A study of the potential ways in which ozone could reduce root growth and nodulation of soybean. Atmospheric Environment, 11, 737–739. doi:10.1016/0004-6981(77)90182-2.

    Article  CAS  Google Scholar 

  • Chen, C. L. (2003). Measurement of plant root activity(TTC). In H. S. H. Li (Ed.), Principle and Technology of Plant Physiological and Biochemical Experiments (pp. 119–120). Beijing: Higher Education Press (In Chinese).

    Google Scholar 

  • Coleman, M. D., Dickson, R. E., Isebrands, J. G., & Karnosky, D. F. (1996). Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology, 16, 145–152.

    CAS  Google Scholar 

  • Cooley, D. R., & Manning, W. J. (1987). The impact of ozone on assimilate partitioning in plants: a review. Environmental Pollution, 47, 95–113. doi:10.1016/0269-7491(87)90040-6.

    Article  CAS  Google Scholar 

  • David, T. T., David, M. O., & Andrew, A. H. (1994). Effects of ozone on crops. In J. M. David (Ed.), Tropospheric Ozone (pp. 175–206). USA: Lewis.

    Google Scholar 

  • Dorhmann, A. B., & Tebbe, C. C. (2005). Effect of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany. Applied and Environmental Microbiology, 71, 7750–7758. doi:10.1128/AEM.71.12.7750-7758.2005.

    Article  Google Scholar 

  • Edwards, N. T. (1991). Root and soil respiration responses to ozone in Pinus taeda L. seedlings. The New Phytologist, 118, 315–321. doi:10.1111/j.1469-8137.1991.tb00983.x.

    Article  CAS  Google Scholar 

  • Fuhrer, J., Skarby, L., & Ashmore, M. R. (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97, 91–106. doi:10.1016/S0269-7491(97)00067-5.

    Article  CAS  Google Scholar 

  • Garland, J. L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 24, 289–300. doi:10.1111/j.1574-6941.1997.tb00446.x.

    Article  CAS  Google Scholar 

  • Garland, J. L., & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. Applied and Environmental Microbiology, 57, 2351–2359.

    Google Scholar 

  • Grayston, S. J., Campbell, C. D., Lutze, J. L., & Gifford, R. M. (1998). Impact of elevated CO2 on the metabolic diversity of microbial communities in N-limited grass swards. Plant and Soil, 203, 289–300. doi:10.1023/A:1004315012337.

    Article  CAS  Google Scholar 

  • Guckert, J. B., Carr, G. J., Johnson, T. D., Hamm, B. G., Davidson, D. H., & Kumagai, Y. (1996). Community analysis by Biolog: curve integration for statistical analysis of activated sludge microbial habitats. Journal of Microbiological Methods, 27(2–3), 183–197. doi:10.1016/S0167-7012(96)00948-7.

    Article  Google Scholar 

  • Helel, H. M., & Sauerbeck, D. R. (1984). Influence of plant roots on C and P metabolism in soil. Plant and Soil, 76, 175–182. doi:10.1007/BF02205578.

    Article  Google Scholar 

  • IPCC (2007). Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Islam, K. R., Mulchi, C. L., & Ali, A. A. (2000). Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil. Global Change Biology, 6, 255–265. doi:10.1046/j.1365-2486.2000.00307.x.

    Article  Google Scholar 

  • Kasurinen, A., Keinanen, M. M., Kaipainen, S., Nilsson, L. O., Vappavuori, E., Kontro, M. H., et al. (2005). Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biology, 11, 1167–1179. doi:10.1111/j.1365-2486.2005.00970.x.

    Article  Google Scholar 

  • Loya, W. M., Pregitzer, K. S., Karberg, N. J., King, J. S., & Giardina, C. P. (2003). Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature, 425, 705–707. doi:10.1038/nature02047.

    Article  CAS  Google Scholar 

  • McCool, P. M., & Menge, J. A. (1983). Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress. The New Phytologist, 94, 241–247. doi:10.1111/j.1469-8137.1983.tb04497.x.

    Article  CAS  Google Scholar 

  • McCrady, J. K., & Andersen, C. P. (2000). The effects of ozone on belowground carbon allocation in wheat. Environmental Pollution, 107, 465–472. doi:10.1016/S0269-7491(99)00122-0.

    Article  CAS  Google Scholar 

  • Phillips, R. L., Zak, D. R., Holmes, W. E., & White, D. C. (2002). Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon oxide and ozone. Oecologia, 131, 236–244. doi:10.1007/s00442-002-0868-x.

    Article  Google Scholar 

  • Reiling, K., & Davison, A. W. (1995). Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago majoi L. The New Phytologist, 12, 587–594. doi:10.1111/j.1469-8137.1995.tb03026.x.

    Google Scholar 

  • Renaud, J. P., Allard, G. B., & Mauffette, Y. (1997). Effects of ozone on yield, growth, and root starch concentration of two alfalfa (Medicago sativa L.) cultivars. Environmental Pollution, 95, 273–281. doi:10.1016/S0269-7491(97)00001-8.

    Article  CAS  Google Scholar 

  • Scagel, C. F., & Andersen, C. P. (1997). Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. The New Phytologist, 136, 627–643. doi:10.1046/j.1469-8137.1997.00779.x.

    Article  CAS  Google Scholar 

  • Shao, M., Tang, X., Zhang, Y., & Li, W. (2006). City clusters in China: air and surface water pollution. Frontiers in Ecology and the Environment, 4(7), 353–361. doi:10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2.

    Article  Google Scholar 

  • Stroo, H. F., Reich, P. B., & Schoettle, A. W. (1988). Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. Canadian Journal of Botany, 66, 1510–1516.

    CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass-C. Soil Biology & Biochemistry, 19, 703–703. doi:10.1016/0038-0717(87)90052-6.

    Article  CAS  Google Scholar 

  • Wang, X. K., Zheng, Q. W., Yao, F. F., Chen, Z., Feng, Z. Z., & Manning, W. J. (2007). Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environmental Pollution, 148(2), 390–395. doi:10.1016/j.envpol.2006.12.014.

    Article  CAS  Google Scholar 

  • Yao, F., Wang, X., Ouyang, Z., & Feng, Z. (2007). A simulation model of ozone stress on photosynthetic production and its allocation of winter wheat. Chinese Journal of Applied Ecology, 18(11), 2586–2593 (in Chinese).

    CAS  Google Scholar 

  • Yevdokimov, I., Ruser, R., Buegger, F., Marx, M., & Munch, J. C. (2006). Microbial immobilization of 13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labeling of oats. Soil Biology & Biochemistry, 38, 1202–1211. doi:10.1016/j.soilbio.2005.10.004.

    Article  CAS  Google Scholar 

  • Zheng, Q. (2006). Effect of elevated ozone level on typical crops in Yangtze Delta, China. Ph.D. dissertation, Research Center for Eco-Environmental Sciences, CAS (in Chinese).

Download references

Acknowledgements

This work was supported by the National Basic Research and Development Program (973) of China (No. 2002CB410803), the National Natural Science Foundation of China (No. 30670387), and the Key Project of Chinese Academy of Sciences (No. KZCXZ-YW-422-3). The authors gratefully acknowledge Q B Wu and Y CH Wei for experimental assistance and H Zheng for help of data analysis. And the authors express gratitude to the reviewers for their valuable suggestions and grammar improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, X., Feng, Z. et al. Impact of Elevated O3 on Soil Microbial Community Function Under Wheat Crop. Water Air Soil Pollut 198, 189–198 (2009). https://doi.org/10.1007/s11270-008-9838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9838-1

Keywords

Navigation