Skip to main content
Log in

Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Frame and daughters directives for evaluating the ambient air quality have been adopted by the EU as a part of the new strategies for pollution prevention and control and environmental management. Therefore, the prediction of ozone concentration and the identification of episodes by modeling are fundamental for protecting and preventing the population and environment against the harmful effects of this species. Under this approach, ambient air quality (immission) data in three zones: A Guarda, Corrubedo and Verín (two coastal and one interior) of Galicia (NW Spain), were collected and evaluated using statistical tools. Punctual and functional background and standard levels of ozone and NOx in the three zones have been determined for detecting abnormal situations and identifying possible emission sources. With this aim, threshold values were established by defining confidence levels. Finally, ozone concentration has been forecasted by time series modeling. Descriptive and predictive models of ozone involving different parameters depending of the area considered have been developed. Satisfactory estimation of ozone concentration was obtained in the three cases with proved efficiency, since predictive values did not exceed the 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bertschi, I. T., & Jaffe, D. A. (2005). Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires. Journal of Geophysical Research (Atmospheres), 110(D5), D05303/1–D05303/14.

    CAS  Google Scholar 

  • Bloomfield, P., Royle, J. A., Steinberg, L. J., & Yang, Q. (1996). Accounting for meteorological effects in measuring urban ozone levels and trends. Atmospheric Environment, 30, 3067–3077. doi:10.1016/1352-2310(95)00347-9.

    Article  CAS  Google Scholar 

  • Box, G. E., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control, revised edition. San Francisco, CA: Holden Day.

    Google Scholar 

  • Bronnimann, S., Buchmann, B., & Wanner, H. (2002). Trends in near-surface ozone concentration in Switzerland: The 1990s. Atmospheric Environment, 36, 2841–2852. doi:10.1016/S1352-2310(02)00145-0.

    Article  CAS  Google Scholar 

  • Castell, N., Mantilla, E., Fernández, F., & López, E. (2004). Comparison of the ozone levels temporal variability in coastal and interior environments. In: Climate between the sea and the mountains. Asociación Española de Climatología y Universidad de Cantabria. Serie A, 4, 591–598 (In Spanish).

  • Castellano Méndez, M., Aira, M. J., Iglesias, I., Jato, V., & González-Manteiga, W. (2005). Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. International Journal of Biometeorology, 49, 310–316. doi:10.1007/s00484-004-0247-x.

    Article  Google Scholar 

  • Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martínez, J., Parrish, D., et al. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research, 97, 6037–6055.

    CAS  Google Scholar 

  • Chatfield, C. (1996). The analysis of time series. An introduction, fifth edition. In texts in statistical science. London: Chapman and Hall.

    Google Scholar 

  • Chen, K. S., Ho, Y. T., Lai, C. H., & Chou, Y.-M. (2003). Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. Atmospheric Environment, 37, 1811–1823. doi:10.1016/S1352-2310(03)00079-7.

    Article  CAS  Google Scholar 

  • Cuevas, A., Febrero-Bande, M., & Fraiman, R. (2006). On the use of the bootstrap for estimating functions with functional data. Computational Statistics & Data Analysis, 51, 1063–1074. doi:10.1016/j.csda.2005.10.012.

    Article  Google Scholar 

  • Dabdub, D., Dehaan, L. L., & Seinfeld, J. H. (1999). Analysis of ozone in the San Joaquin Valley of California. Atmospheric Environment, 33, 2501–2514. doi:10.1016/S1352-2310(98)00256-8.

    Article  CAS  Google Scholar 

  • Damon, J., & Guillas, S. (2002). The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics, 13, 759–774. doi:10.1002/env.527.

    Article  CAS  Google Scholar 

  • Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. The Science of the Total Environment, 299, 97–113. doi:10.1016/S0048-9697(02)00251-6.

    Article  Google Scholar 

  • Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2004). Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere, 56, 631–639. doi:10.1016/j.chemosphere.2004.04.013.

    Article  CAS  Google Scholar 

  • Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2005). Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere, 61, 1379–1389. doi:10.1016/j.chemosphere.2005.04.079.

    Article  CAS  Google Scholar 

  • Dutot, A.-L., Rynkiewicz, J., Steiner, F. E., & Rude, J. (2007). A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental Modelling & Software, 22, 1261–1269. doi:10.1016/j.envsoft.2006.08.002.

    Article  Google Scholar 

  • Elkamel, A., Abdul-Wahab, S., Bouhamra, W., & Alper, E. (2001). Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Advances in Environmental Research, 5, 47–59. doi:10.1016/S1093-0191(00)00042-3.

    Article  CAS  Google Scholar 

  • Environmental Laboratory of Galicia (2001). Study of atmospheric deposition and its characterisation and impact as atmospheric pollution prevention in the Galicia-North Portugal Eurorregion. Initiative INTERREG IIC, Operative Programme “Atlantic Space” (In Spanish).

  • European Environment Agengy.(2004). EPER The European Pollutant Emission Register. http://eper.eea.europa.eu/eper/.

  • Febrero-Bande, M., Galeano, P., & González-Manteiga, W. (2007). A functional analysis of NOx levels: location and scale estimation and outlier detection. Computational Statistics, 22, 411–427. doi:10.1007/s00180-007-0048-x.

    Article  Google Scholar 

  • Fernández de Castro, B., Guillas, S., & González Manteiga, W. (2005). Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics, 47, 212–222. doi:10.1198/004017005000000067.

    Article  Google Scholar 

  • Fernández de Castro, B. M., Prada-Sánchez, J. M., Febrero-Bande, M., Bermúdez-Cela, J. L., Hernández-Hernández, J. J., & González-Manteiga, W. (2003). Prediction of SO2 level using neural networks. Journal of the Air & Waste Management Association, 53, 532–538.

    Google Scholar 

  • Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10, 419–440. doi:10.1007/BF02595706.

    Article  Google Scholar 

  • Fusco, A. C., & Logan, J. A. (2003). Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. Journal of Geophysical Research, 108(D15), ACH 4–1–ACH 4-25.

    Article  CAS  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (2000). Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment, 34, 171–176. doi:10.1016/S1352-2310(99)00315-5.

    Article  CAS  Google Scholar 

  • Ghiaus, C. (2005). Linear fuzzy-discriminant analysis applied to forecast ozone concentration classes in sea-breeze regime. Atmospheric Environment, 39, 4691–4702. doi:10.1016/j.atmosenv.2005.04.012.

    Article  CAS  Google Scholar 

  • Grifoni, R. C., Passerini, G., & Tascini, S. (2004). An assessment of the sea/valley breeze and its impact on ozone behaviour. Environmental Studies, 10, 257–266.

    CAS  Google Scholar 

  • Huang, H., Akustu, Y., Arai, M., & Tamura, M. (2001). Analysis of photochemical pollution in summer and winter using a photochemical box model in the center of Tokyo, Japan. Chemosphere, 44, 223–230. doi:10.1016/S0045-6535(00)00189-2.

    Article  CAS  Google Scholar 

  • Jiménez, P., Jorba, O., Parra, R., & Baldasano, J. M. (2006). Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmospheric Environment, 40, 5056–5072. doi:10.1016/j.atmosenv.2005.12.060.

    Article  CAS  Google Scholar 

  • Krupa, S., Nosal, M., Ferdinand, J. A., Stevenson, R. E., & Skelly, J. M. (2003). A multi-variate statistical model integrating passive sampler and meteorology data to predict the frequency distributions of hourly ambient ozone (O3) concentrations. Environmental Pollution, 124, 173–178. doi:10.1016/S0269-7491(02)00407-4.

    Article  CAS  Google Scholar 

  • Lee, S.-H., Akimoto, H., Nakane, H., Kurnosenko, S., & Kinjo, Y. (1998). Lower tropospheric ozone trend observed in 1989–1997 at Okinawa, Japan. Geophysical Research Letters, 25, 1637–1640. doi:10.1029/98GL01224.

    Article  CAS  Google Scholar 

  • Lengyel, A., Héberger, H., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57, 889–896. doi:10.1016/j.chemosphere.2004.07.043.

    Article  CAS  Google Scholar 

  • Logan, J. A. (1985). Tropospheric ozone: seasonal behaviour, trends and anthropogenic influence. Journal of Geophysical Research, 90, 463–482. doi:10.1029/JD090iD06p10463.

    Article  Google Scholar 

  • Logan, J. A. (1994). Trends in the vertical distribution of ozone: An analysis of ozone sonde data. Journal of Geophysical Research, 99, 25553–25585. doi:10.1029/94JD02333.

    Article  Google Scholar 

  • Martinez-Cortizas, A., & Pérez-Alberti, A. (2000). Galician climatic atlas (In Spanish). Environmental Ministry, Galician Government Eds., Santiago de Compostela (Spain).

  • MacDonald, C. P., Roberts, P. T., Main, H. H., Dye, T. S., Coe, D. L., & Yarbrough, J. (2001). The 1996 Paso del Norte Ozone Study: Analysis of meteorological and air quality data that influence local ozone concentrations. The Science of the Total Environment, 276, 93–109. doi:10.1016/S0048-9697(01)00774-4.

    Article  CAS  Google Scholar 

  • Menut, L., Coll, I., & Cautenet, S. (2005). Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP2a and IOP2b. Atmospheric Research, 74, 139–159. doi:10.1016/j.atmosres.2004.04.008.

    Article  CAS  Google Scholar 

  • Monks, P. S. (2000). A review of the observations and origins of the spring ozone maximum. Atmospheric Environment, 34, 3545–3561. doi:10.1016/S1352-2310(00)00129-1.

    Article  CAS  Google Scholar 

  • Monteiro, A., Vautard, R., Lopes, M., Miranda, A., & Borrego, C. (2005). Air pollution forecast in Portugal: A demand from the new air quality framework directive. International Journal of Environment and Pollution, 25, 4–15. doi:10.1504/IJEP.2005.007650.

    Article  CAS  Google Scholar 

  • Palacios, M., Kirchner, F., Martilli, A., Clappier, A., Martín, F., & Rodríguez, M. E. (2002). Summer ozone episodes in the Greater Madrid area. Analyzing the ozone response to abatement strategies by modelling. Atmospheric Environment, 36, 5323–5333. doi:10.1016/S1352-2310(02)00590-3.

    Article  CAS  Google Scholar 

  • Peña, D. (2002). Multivariate data analysis (in Spanish). McGraw Hill.–Interamericana de España, S.A.U.

  • Pulles, T. van het Bolscher, M., Brand, R., & Visschedijk, A. (2007). Assessment of global emissions from fuel combustion in the final decades of the 20th century. Application of the Emission Inventory Model TEAM. TNO Report 2007-A-R132/B.

  • Quinteira, S., Monteiro, N., Cartelle, D., Rodríguez, R., Costoya, M., Roca, E., et al. (2001). Monitorizaçao de metais pesados em solos por ICP e análise da flora microbiana. XV Encontro Galego-Portugues de Química, Book of Proceedings (pp 505–506). A Coruña. (In Spanish).

  • Ramsay, J. O., & Silverman, B. W. (1997). Functional data analysis. New York: Springer. (In Springer series in statistics).

    Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis. In Springer series in statistics. New York: Springer.

    Google Scholar 

  • Sanz, M. J., Calatayud, V., & Sánchez-Peña, G. (2007). Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environmental Pollution, 145, 620–628. doi:10.1016/j.envpol.2006.02.031.

    Article  CAS  Google Scholar 

  • Shively, T. S., & Sager, T. W. (1999). Semiparametric regression approach to adjusting for meteorological variables in air pollution trends. Environmental Science & Technology, 33, 3873–3880. doi:10.1021/es990286b.

    Article  CAS  Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its application. In R. H. Shumway, & D. S. Stoffer (Eds.), Springer text in statistics. New York: Springer.

    Google Scholar 

  • Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845. doi:10.1016/S1352-2310(98)00345-8.

    Article  CAS  Google Scholar 

  • Soja, G., & Soja, A. M. (1999). Ozone indices based on simple meteorological parameters: Potentials and limitations of regression and neural network models. Atmospheric Environment, 33, 4299–4307. doi:10.1016/S1352-2310(99)00126-0.

    Article  CAS  Google Scholar 

  • Sousa, S. I. V., Martins, F. G., Pereira, M. C., & Alvim-Ferraz, M. C. M. (2006). Prediction of ozone concentrations in Oporto city with statistical approaches. Chemosphere, 64, 1141–1149. doi:10.1016/j.chemosphere.2005.11.051.

    Article  CAS  Google Scholar 

  • Stohl, A., & Trickl, T. (1999). A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. Journal of Geophysical Research (Atmospheres), 104(D23), 30445–30462. doi:10.1029/1999JD900803.

    Article  CAS  Google Scholar 

  • Tarasova, O. A., & Karpetchko, S. Y. (2003). Accounting for local meteorological effects in the ozone time series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics, 3, 941–949.

    Article  CAS  Google Scholar 

  • Topcu, S., Anteplioglu, U., & Incecik, S. (2003). Surface ozone concentrations and its relation to wind field in Istanbul. Water Air and Soil Pollution Focus, 3, 53–64. doi:10.1023/A:1026046321511.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (1999). Guideline for developing an ozone forecasting program. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

  • Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442. doi:10.1016/j.atmosenv.2004.03.030.

    Article  CAS  Google Scholar 

  • Vinagarzan, R., & Thomson, B. (2004). Temporal variation in daily concentrations of ozone and acid related substances in Saturna Island, British Columbia, Canada. Journal of the Air & Waste Management Association, 54, 459–472.

    Google Scholar 

  • Wei, W. W. S. (1993). Time series analysis: Univariate and multivariate methods. Wokingham, UK: Addison-Wesley.

    Google Scholar 

  • Wu, H. W. Y., & Chan, L. Y. (2001). Surface ozone trends in Hong Kong in 1985–1995. Environment International, 26, 213–222. doi:10.1016/S0160-4120(00)00108-2.

    Article  Google Scholar 

Download references

Acknowledgements

This work partially has been carried out with the support provided by the MEyC project (European FEDER support included) MTM2005-00820 and by the Dirección Xeral de I+D+I (Xunta de Galicia) through the project SIPENOZON (INCITE-07MDS049E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Roca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellano, M., Franco, A., Cartelle, D. et al. Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis. Water Air Soil Pollut 198, 95–110 (2009). https://doi.org/10.1007/s11270-008-9829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9829-2

Keywords

Navigation