Skip to main content
Log in

Nutrient Removal in Pilot-Scale Constructed Wetlands Treating Eutrophic River Water: Assessment of Plants, Intermittent Artificial Aeration and Polyhedron Hollow Polypropylene Balls

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Seven experimental pilot-scale subsurface vertical-flow constructed wetlands were designed to assess the effect of plants [Typha latifolia L. (cattail)], intermittent artificial aeration and the use of polyhedron hollow polypropylene balls (PHPB) as part of the wetland substrate on nutrient removal from eutrophic Jinhe River water in Tianjin, China. During the entire running period, observations indicated that plants played a negligible role in chemical oxygen demand (COD) removal but significantly enhanced ammonia–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal. The introduction of intermittent artificial aeration and the presence of PHPB could both improve COD, NH4–N, TN, SRP and TP removal. Furthermore, aerated wetlands containing PHPB performed best; the following improvements were noted: 10.38 g COD/m2 day, 1.34 g NH4–N/m2 day, 1.04 g TN/m2 day, 0.07 g SRP/m2 day and 0.07 g TP/m2 day removal, if compared to non-aerated wetlands without PHPB being presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansola, G., Gonzalez, J. M., Cortijo, R., & de Luis, E. (2003). Experimental and full-scale pilot plant constructed wetlands for municipal wastewaters treatment. Ecological Engineering, 21(1), 43–52. doi:10.1016/j.ecoleng.2003.08.002.

    Article  Google Scholar 

  • APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC: American Public Health Association/American Water Works Association/ Water Environment Federation.

  • Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W., & Beckett, P. M. (2000). Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Annals of Botany, 86(3), 687–703. doi:10.1006/anbo.2000.1236.

    Article  Google Scholar 

  • Behrends, L., Houke, L., Bailey, E., Jansen, P., & Brown, D. (2001). Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater. Water Science and Technology, 44(11–12), 399–405.

    CAS  Google Scholar 

  • Bezbaruah, A. N., & Zhang, T. C. (2003). Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal. Environmental Science & Technology, 37(8), 1690–1697. doi:10.1021/es020912w.

    Article  CAS  Google Scholar 

  • Bigambo, T., & Mayo, A. W. (2005). Nitrogen transformation in horizontal subsurface flow constructed wetlands II: Effect of biofilm. Physics and Chemistry of the Earth, 30(11–16), 668–672.

    Google Scholar 

  • Braskerud, B. C. (2002). Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Ecological Engineering, 19(1), 41–61. doi:10.1016/S0925-8574(02)00014-9.

    Article  Google Scholar 

  • Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Science and Technology, 29(4), 71–78.

    CAS  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), 11–17. doi:10.1016/S0273-1223(97)00047-4.

    Article  CAS  Google Scholar 

  • Brix, H., Arias, C. A., & Del Bubba, M. (2001). Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Science and Technology, 44(11–12), 47–54.

    CAS  Google Scholar 

  • Busnardo, M. J., Gersberg, R. M., Langis, R., Sinicrope, T. L., & Zelder, J. B. (1992). Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods. Ecological Engineering, 1(4), 287–308. doi:10.1016/0925-8574(92)90012-Q.

    Article  Google Scholar 

  • Chen, T. Y., Kao, C. M., Yeh, T. Y., Chien, H. Y., & Chao, A. C. (2006). Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere, 64(3), 497–502. doi:10.1016/j.chemosphere.2005.11.069.

    Article  CAS  Google Scholar 

  • Ciria, M. P., Solano, M. L., & Soriano, P. (2005). Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering, 92(4), 535–544. doi:10.1016/j.biosystemseng.2005.08.007.

    Article  Google Scholar 

  • De Renzo, D. J. (1978). Nitrogen control and phosphorus removal in sewage treatment. Park Ridge, NJ: Noyes Data.

    Google Scholar 

  • Fraser, L. H., Carty, S. M., & Steer, D. (2004). A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource Technology, 94(2), 185–192. doi:10.1016/j.biortech.2003.11.023.

    Article  CAS  Google Scholar 

  • Grady, C. P. L., & Lim, H. (1980). Biological wastewater treatment: Theory and applications. New York: Marcel Dekker.

    Google Scholar 

  • Green, M., Friedler, E., Ruskol, Y., & Safrai, I. (1997). Investigation of alternative method for nitrification in constructed wetlands. Water Science and Technology, 35(5), 63–70. doi:10.1016/S0273-1223(97)00053-X.

    Article  CAS  Google Scholar 

  • Huett, D. O. (1997). Diagnostic leaf nutrient standards for lowchill peaches in subtropical Australia. Australian Journal of Experimental Agriculture, 37(1), 119–126. doi:10.1071/EA96040.

    Article  Google Scholar 

  • Huett, D. O., Morris, S. G., Smith, G., & Hunt, N. (2005). Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Research, 39(14), 3259–3272. doi:10.1016/j.watres.2005.05.038.

    Article  CAS  Google Scholar 

  • Johnston, C. A. (1991). Sediments and nutrient retention by freshwater wetlands: Effects on surface water quality. Critical Reviews in Environmental Control, 21(5–6), 491–565.

    Article  Google Scholar 

  • Kadlec, R., & Knight, R. (1996). Treatment wetlands. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Korkusuz, E. A., Bekliöglu, M., & Demirer, N. G. (2005). Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecological Engineering, 24(3), 187–200. doi:10.1016/j.ecoleng.2004.10.002.

    Article  Google Scholar 

  • Kuschk, P., Wiessner, A., Kappelmeyer, U., Weissbrodt, E., Kastner, M., & Stottmeister, U. (2003). Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Research, 37(17), 4236–4242. doi:10.1016/S0043-1354(03)00163-5.

    Article  CAS  Google Scholar 

  • Lee, B.-H., & Scholz, M. (2006). A comparative study: Prediction of constructed treatment wetland performance with K-nearest neighbours and neural networks. Water, Air, and Soil Pollution, 174(1–4), 279–301. doi:10.1007/s11270-006-9113-2.

    Article  CAS  Google Scholar 

  • Leonard, K. M., Key, S. P., & Srikanthan, R. (2003). A comparison of nitrification performance in gravity-flow and reciprocating constructed wetlands. In C. A. Brebbia, D. Almorza, & D. Sales (Eds.), Water pollution VII—Modelling, measuring and prediction (pp. 293–301). Southampton: WIT Press.

    Google Scholar 

  • Li, L. F., Li, Y. H., Biswas, D. K., Nian, Y. G., & Jiang, G. M. (2008). Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresource Technology, 99(6), 1656–1663. doi:10.1016/j.biortech.2007.04.001.

    Article  CAS  Google Scholar 

  • Liu, C. G., Jin, X. C., Wang, W., Qiu, J. Q., Ding, C. L., Sun, L., et al. (2004). Dynamic analysis of water quality and nutrition status of a landscape river—A case study on Jinhe River in Tianjin. Environmental Pollution and Control, 26(4), 312–316.

    Google Scholar 

  • Liu, L., Xu, Z. H., Song, C. Y., Gu, Q. B., Sang, Y. M., Lu, G. L., et al. (2006). Adsorption–filtration characteristics of melt-blown polypropylene fiber in purification of reclaimed water. Desalination, 201(1–3), 198–206. doi:10.1016/j.desal.2006.02.014.

    Article  CAS  Google Scholar 

  • Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., & Gersberg, R. M. (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18(2), 157–171. doi:10.1016/S0925-8574(01)00075-1.

    Article  Google Scholar 

  • Metcalf and Eddy (1995). Wastewater engineering: Treatment, disposal and reuse. New Delhi: McGraw-Hill.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Nivala, J., Hoos, M. B., Cross, C., Wallace, S., & Parkin, G. (2007). Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. The Science of the Total Environment, 380(1–3), 19–27. doi:10.1016/j.scitotenv.2006.12.030.

    CAS  Google Scholar 

  • Ouellet-Plamondon, C., Chazarenc, F., Comeau, Y., & Brisson, J. (2006). Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecological Engineering, 27(3), 258–264. doi:10.1016/j.ecoleng.2006.03.006.

    Article  Google Scholar 

  • Peng, X. H., Fei, X. N., & Li, H. Y. (2006). Analyzed on the water quality of Jinhe River in Tianjin. Journal of Southern Yangtze University, 5(3), 345–348. Natural Science Edition.

    Google Scholar 

  • Reddy, K. R., & DeBusk, W. F. (1987). Nutrient storage capabilities of aquatic and wetland plants. In K. R. Reddy, & W. H. Smith (Eds.), Aquatic plants for water treatment and resource recovery (pp. 337–357). Orlando, Florida: Magnolia Publishing.

    Google Scholar 

  • Reddy, G. B., Hunt, P. G., Phillips, R., Stone, K., & Grubbs, A. (2001). Treatment of swine wastewater in marsh–pond–marsh constructed wetlands. Water Science and Technology, 44(11–12), 545–550.

    CAS  Google Scholar 

  • Scholz, M. (2006). Wetland systems to control urban runoff. Amsterdam: Elsevier.

    Google Scholar 

  • Scholz, M., & Lee, B.-H. (2005). Constructed wetlands: A review. The International Journal of Environmental Studies, 62(4), 421–447. doi:10.1080/00207230500119783.

    Article  Google Scholar 

  • Sikora, F. J., Tong, Z., Behrends, L. L., Steinberg, S. L., & Coonrod, H. S. (1995). Ammonium and phosphorus removal in constructed wetlands with recirculating subsurface flow: Removal rates and mechanisms. Water Science and Technology, 32(3), 193–202. doi:10.1016/0273-1223(95)00620-6.

    Article  CAS  Google Scholar 

  • Šimek, M., Jíšová, L., & Hopkins, D. W. (2002). What is the so-called optimum pH for denitrification in soil? Soil Biology & Biochemistry, 34(9), 1227–1234. doi:10.1016/S0038-0717(02)00059-7.

    Article  Google Scholar 

  • SPSS. (2003). Analytical software. Statistical Package for the Social Sciences (SPSS) Headquarters. Chicago, IL: SPSS.

    Google Scholar 

  • Sun, G. Z., Zhao, Y. Q., & Allen, S. (2005). Enhanced removal of organic matter and ammonia–nitrogen in a column experiment of tidal flow constructed wetland system. Journal of Biotechnology, 115(2), 189–197. doi:10.1016/j.jbiotec.2004.08.009.

    Article  CAS  Google Scholar 

  • Tanner, C. C., D’Eugenio, J., McBride, G. B., Sukias, J. P. S., & Thompson, K. (1999). Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecological Engineering, 12(1–2), 67–92. doi:10.1016/S0925-8574(98)00055-X.

    Article  Google Scholar 

  • Verhoeven, J. T. A., & Meuleman, A. F. M. (1999). Wetlands for wastewater treatment: opportunities and limitations. Ecological Engineering, 12(1–2), 5–12. doi:10.1016/S0925-8574(98)00050-0.

    Article  Google Scholar 

  • Vymazal, J. (1995). Algae and element cycling in wetlands. Chelsea, Michigan: Lewis.

    Google Scholar 

  • Vymazal, J. (1999). Removal of BOD5 in constructed wetlands with horizontal subsurface flow: Czech experience. Water Science and Technology, 40(3), 133–138. doi:10.1016/S0273-1223(99)00456-4.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. The Science of the Total Environment, 380(1–3), 48–65. doi:10.1016/j.scitotenv.2006.09.014.

    CAS  Google Scholar 

  • Wand, H., Vacca, G., Kuschk, P., Krüger, M., & Kästner, M. (2007). Removal of bacteria by filtration in planted and non-planted sand columns. Water Research, 41(1), 159–167. doi:10.1016/j.watres.2006.08.024.

    Article  CAS  Google Scholar 

  • Wang, J. S., & Tan, H. (2005). Constructed wetland at high hydraulic loading for eutrophic lake water treatment. China Water and Wastewater, 21(1), 1–4.

    Google Scholar 

  • Wang, N., Zhao, G. Y., Lv, Y., & Wu, L. N. (2003). An elementary study on organic and biological contamination in Jin River water of Tianjin. Journal of Environmental Health, 20(5), 292–293.

    Google Scholar 

  • Watson, J. T., & Danzig, A. J. (1993). Pilot-scale nitrification studies using vertical-flow and shallow horizontal-flow constructed wetland cells. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 301–313). Boca Raton, FL: Lewis.

    Google Scholar 

  • Wieβer, A., Kuschk, P., & Stotmeister, U. (2002). Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems. Acta Biotechnologica, 22(1–2), 209–216. doi:10.1002/1521-3846(200205)22:1/2<209::AID-ABIO209>3.0.CO;2-O.

    Google Scholar 

  • Yang, L., Chang, H. T., & Huang, M. N. L. (2001). Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecological Engineering, 18(1), 91–105. doi:10.1016/S0925-8574(01)00068-4.

    Article  Google Scholar 

  • Yu, H. Y., Hu, M. X., Xu, Z. K., Wang, J. L., & Wang, S. Y. (2005). Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 45(1), 8–15. doi:10.1016/j.seppur.2005.01.012.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Li, H. Y., Wang, X. D., & Wang, Q. (2006). Study on phosphorus removal from Jin River water by purifying agent. China Water andWastewater, 22(23), 67–70.

    Google Scholar 

  • Zhu, T., Li, H. Y., & Li, Q. (2001). Effects for urban ecological environment by restoration of Jinhe River. Urban Environment and Urban Ecology, 14(3), 16–17.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 50479034), the Innovative Projects of Modern Water Conservancy of China (XDS2007-05) and the Natural Science Foundation of Tianjin (05YFSZSF02100). The authors appreciate the support provided by Ms. J. Wang, Mr. J. Niu, Ms. X.J. Li and Mr. X.G. Liu. Mr. Tang is a visiting PhD student at The University of Edinburgh, supervised by Dr Scholz who is a Visiting Professor at Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suiliang Huang or Miklas Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Huang, S., Scholz, M. et al. Nutrient Removal in Pilot-Scale Constructed Wetlands Treating Eutrophic River Water: Assessment of Plants, Intermittent Artificial Aeration and Polyhedron Hollow Polypropylene Balls. Water Air Soil Pollut 197, 61–73 (2009). https://doi.org/10.1007/s11270-008-9791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9791-z

Keywords

Navigation