Skip to main content

Potential Biotechnological Strategies to Improve Quality and Productivity of Rice Under Arsenic Stress

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Rice (Oryza sativa L.) is a widely cultivated staple food crop feeds half of the world’s population. However, rice accumulates higher amount of heavy metals like arsenic and serves as a prominent source of arsenic exposure to humans. Arsenic is a pervasive metalloid, and its contamination in soil and water has been reported globally. In an aerobic environment, arsenic is mainly present as arsenate (AsV), while under anaerobic conditions like flooded paddy soil, it primarily exists in the reduced form as arsenite (AsIII). Because of the extensive incidence of arsenic in paddy fields, a substantially high amount of arsenic gets accumulated in grains and causes severe human health risks. Therefore, it is necessary to reduce arsenic toxicity with suitable approaches and mechanisms. Several biotechnological strategies may offer an effective approach to reduce arsenic accumulation in rice grains. Many key processes can be targeted to regulate its accumulation in rice grains. These include arsenic uptake, AsIII efflux, AsV reduction, AsIII sequestration, and arsenic methylation and volatilization. The combination of modern biotechnology with conventional agricultural practices in a sustainable manner may help clear up arsenic contamination in soil and water and decrease its accumulation in grains. Presently, we emphasize on biotechnological approaches and strategies for reducing arsenic accumulation in rice. These strategies can help to achieve food security for the present and future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adomako EE, Williams PN, Deacon C, Meharg AA (2011) Inorganic arsenic and trace elements in Ghanaian grain staples. Environ Pollut 159(10):2435–2442

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD (2018) A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: a promising and feasible approach. Environ Exp Bot 150:115–126

    Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195

    Article  Google Scholar 

  • Bhattacharya P, Samal A, Majumdar J, Santra S (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8(1):63–70

    Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6(1):26

    Article  CAS  Google Scholar 

  • Briat J-F (2010) Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proc Natl Acad Sci U S A 107(49):20853–20854

    Article  CAS  Google Scholar 

  • Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51(21):12131–12138

    Article  CAS  Google Scholar 

  • Carey A-M, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice. Plant Physiol 152(1):309–319

    Article  CAS  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192(1):87–98

    Article  CAS  Google Scholar 

  • Chen J, Qin J, Zhu Y-G, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium. Pseudomonas pudita for arsenic methyylation. Appl Environ Microbiol 79(14):4493–4495

    Article  CAS  Google Scholar 

  • Chen Y, Sun S-K, Tang Z, Liu G, Moore KL, Maathuis FJ, Miller AJ, McGrath SP, Zhao F-J (2017) The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68(11):3007–3016

    Article  CAS  Google Scholar 

  • Colmer T (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26(1):17–36

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017) Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94(1–2):167–183

    Article  CAS  Google Scholar 

  • Deng F, Yamaji N, Ma JF, Lee SK, Jeon JS, Martinoia E, Lee Y, Song WY (2018) Engineering rice with lower grain arsenic. Plant Biotechnol J 16(10):1691–1699

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140

    Article  CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2011) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53(1):154–163

    Article  CAS  Google Scholar 

  • Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    Article  CAS  Google Scholar 

  • Fransisca Y, Small DM, Morrison PD, Spencer MJ, Ball AS, Jones OA (2015) Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry. Chemosphere 138:1008–1013

    Article  CAS  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12(4):635–647

    Article  CAS  Google Scholar 

  • Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S (2017) Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J 91(5):840–848

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M, Wang F-H, Zhang L-M, Zhu Y-G (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47(7):3141–3148

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Chen Z, Zhu Y-G (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48(2):1001–1007

    Article  CAS  Google Scholar 

  • Joseph T, Dubey B, McBean EA (2015) Human health risk assessment from arsenic exposures in Bangladesh. Sci Total Environ 527:552–560

    Article  CAS  Google Scholar 

  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59(4):580–590

    Article  CAS  Google Scholar 

  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice (N Y) 6(1):3

    Article  Google Scholar 

  • Lee J-S, Lee S-W, Chon H-T, Kim K-W (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. J Geochem Explor 96(2–3):231–235

    Article  CAS  Google Scholar 

  • Li Z-S, Lu Y-P, Zhen R-G, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci U S A 94(1):42–47

    Article  CAS  Google Scholar 

  • Li R-Y, Ago Y, Liu W-J, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080

    Article  CAS  Google Scholar 

  • Li H, Chen XW, Wong MH (2016) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemosphere 145:224–230

    Article  CAS  Google Scholar 

  • Lin H-T, Wong S-S, Li G-C (2004) Heavy metal content of rice and shellfish in Taiwan. J Food Drug Anal 12(2):167–174

    CAS  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193(3):665–672

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105(29):9931–9935

    Article  CAS  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G, Zhu Y-G, Feldmann J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43(5):1612–1617

    Article  CAS  Google Scholar 

  • Mei X, Ye Z, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157(8–9):2550–2557

    Article  CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    Article  CAS  Google Scholar 

  • Mohd S, Shukla J, Kushwaha AS, Mandrah K, Shankar J, Arjaria N, Saxena PN, Narayan R, Roy SK, Kumar M (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754

    Article  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21(6):1265–1277

    Article  CAS  Google Scholar 

  • Nookabkaew S, Rangkadilok N, Mahidol C, Promsuk G, Satayavivad J (2013) Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS analysis. J Agric Food Chem 61(28):6991–6998

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329(1):139–153

    Article  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99(20):13324–13329

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4(3):197–203

    Article  CAS  Google Scholar 

  • Ranjan R, Kumar N, Dubey AK, Gautam A, Pandey SN, Mallick S (2018) Diminution of arsenic accumulation in rice seedlings co-cultured with Anabaena sp.: modulation in the expression of lower silicon transporters, two nitrogen dependent genes and lowering of antioxidants activity. Ecotoxicol Environ Saf 151:109–117

    Article  CAS  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao D-Y, Zhao F-J (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172(3):1708–1719

    Article  CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Article  CAS  Google Scholar 

  • Singh S, Shrivastava A, Barla A, Bose S (2015) Isolation of arsenic-resistant bacteria from Bengal delta sediments and their efficacy in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32(8):712–723

    Article  CAS  Google Scholar 

  • Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N (2016a) Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 125:25–34

    Article  CAS  Google Scholar 

  • Singh N, Srivastava S, Rathaur S, Singh N (2016b) Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. J Environ Sci 48:112–119

    Article  CAS  Google Scholar 

  • Sommella A, Deacon C, Norton G, Pigna M, Violante A, Meharg A (2013) Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type. Environ Pollut 181:38–43

    Article  CAS  Google Scholar 

  • Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107(49):21187–21192

    Article  CAS  Google Scholar 

  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111(44):15699–15704

    Article  CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442

    Article  CAS  Google Scholar 

  • Su Y-H, McGrath SP, Zhao F-J (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1–2):27–34

    Article  CAS  Google Scholar 

  • Sun SK, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao FJ (2018) Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol 219(2):641–653

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal the involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37(1):140–152

    Google Scholar 

  • Torres-Escribano S, Leal M, Vélez D, Montoro R (2008) Total and inorganic arsenic concentrations in rice sold in Spain, the effect of cooking, and risk assessments. Environ Sci Technol 42(10):3867–3872

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  CAS  Google Scholar 

  • Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y (2017) Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant Cell Physiol 58(10):1730–1742

    Article  CAS  Google Scholar 

  • Verma PK, Verma S, Meher AK, Pande V, Mallick S, Bansiwal AK, Tripathi RD, Dhankher OP, Chakrabarty D (2016a) Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast. Plant Physiol Biochem 106:208–217

    Article  CAS  Google Scholar 

  • Verma PK, Verma S, Pande V, Mallick S, Deo Tripathi R, Dhankher OP, Chakrabarty D (2016b) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740

    Google Scholar 

  • Verma S, Verma PK, Meher AK, Dwivedi S, Bansiwal AK, Pande V, Srivastava PK, Verma PC, Tripathi RD, Chakrabarty D (2016c) A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics 8(3):344–353

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Pande V, Tripathi RD, Chakrabarty D (2016d) Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. Environ Exp Bot 132:113–120

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D (2018) A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.). J Hazard Mater 344:626–634

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Chakrabarty D (2019) Arsenic bio-volatilization by engineered yeast promotes rice growth and reduces arsenic accumulation in grains. Int J Environ Res. https://doi.org/10.1007/s41742-019-00188-7

  • Verma PK, Verma S, Deo Tripathi R, Chakrabarty D (2020) A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotoxicol Environ Saf 195. https://doi.org/10.1016/j.ecoenv.2020

  • Wang P, Zhang W, Mao C, Xu G, Zhao F-J (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67(21):6051–6059

    Article  CAS  Google Scholar 

  • Wang F-Z, Chen M-X, Yu L-J, Xie L-J, Yuan L-B, Qi H, Xiao M, Guo W, Chen Z, Yi K (2017) OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci 8:1868

    Article  Google Scholar 

  • Wang P, Xu X, Tang Z, Zhang W, Huang X-Y, Zhao F-J (2018) OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci 9:1330

    Article  CAS  Google Scholar 

  • WHO G (2011) Guidelines for drinking-water quality. World Health Organization 216:303–304

    Google Scholar 

  • Williams PN, Islam M, Adomako E, Raab A, Hossain S, Zhu Y, Feldmann J, Meharg AA (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40(16):4903–4908

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao F-J (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157(1):498–508

    Article  CAS  Google Scholar 

  • Wu F, Hu J, Wu S, Wong MH (2015) Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils. Environ Sci Pollut Res Int 22(12):8919–8926

    Article  CAS  Google Scholar 

  • Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215(3):1090–1101

    Article  CAS  Google Scholar 

  • Yang J, Gao MX, Hu H, Ding XM, Lin HW, Wang L, Xu JM, Mao CZ, Zhao FJ, Wu ZC (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211(2):658–670

    Google Scholar 

  • Ye Y, Li P, Xu T, Zeng L, Cheng D, Yang M, Luo J, Lian X (2017) OsPT4 contributes to arsenate uptake and transport in rice. Front Plant Sci 8:2197

    Article  Google Scholar 

  • Zhang J, Zhu YG, Zeng DL, Cheng WD, Qian Q, Duan GL (2008) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol 177(2):350–355

    CAS  Google Scholar 

  • Zhang Z, Yin N, Cai X, Wang Z, Cui Y (2016) Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. J Environ Sci 47:165–173

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794

    Article  CAS  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186(2):392–399

    Article  CAS  Google Scholar 

  • Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47(9):3957–3966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Verma, P.K., Chakrabarty, D. (2020). Potential Biotechnological Strategies to Improve Quality and Productivity of Rice Under Arsenic Stress. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_14

Download citation

Publish with us

Policies and ethics