Skip to main content
Log in

Relationship Between Sulphate Starvation and Chromate Reduction in a H2-fed Fixed-film Bioreactor

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

While developing a low-sulphate system combining indirect chromate-reduction by biologically-produced hydrogen sulphide and direct biological chromate-reduction to treat chromate-bearing waters, the aim of the present work was to evaluate the influence of sulphate and H2 starvation on chromate reduction. Chromate-reduction was performed under continuous-feed conditions in a fixed-film column bioreactor originally inoculated with a bacterial consortium containing Desulfomicrobium norvegicum, and fed with H2. With 500 mg l−1 of sulphate in the feed solution, total chromate-reduction was observed in the effluent whereas sulphate-reduction was strongly decreased, as also confirmed by measurements of isotopic ratios for sulphur. In the absence of sulphate, a chromate-reduction activity was still observed but was lower than in the presence of sulphate, and chromate-reduction was H2-dependent. Molecular biology techniques revealed the composition of the bacterial population in the effluent. D. norvegicum together with other micro-organisms of the Bacteria domain were detected. They include members related to the genera Acinetobacter, Acetobacterium and Rhodocyclus. Even when sulphate-reduction was strongly decreased, the presence of sulphate enhances the efficiency of the H2-dependent chromate-reduction. A H2- and CO2-consuming bacterial population may be used in a globally autotrophic process to reduce chromate at low sulphate concentration, thus avoiding excess sulphide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias, Y. M., & Tebo, B. M. (2003). Cr(VI) reduction by sulphidogenic and non-sulphidogenic microbial consortia. Applied and Environmental Microbiology, 69, 1847–1853.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet, F., Touze, S., Michel, C., & Ignatiadis, I. (2006). Treatment of a chromate-polluted groundwater in a 200-dm3 pilot bio-reactor fed with hydrogen. Journal of Chemical Technology and Biotechnology, 81, 1506–1513.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet, F., Foucher, S., Denamur, A., Margraff, M., Morin, D., & Ignatiadis, I. (2004a). Chromate reduction at low sulphate concentration in hydrogen-fed bioreactors. Environmental Technology, 25(1), 101–109.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet, F., Foucher, S., Morin, D., & Ignatiadis, I. (2004b). Chromate (\( {\rm CrO}^{{2 - }}_{4} \)) reduction in ground waters by using reductive bacteria in fixed-bed bioreactors. Water, Air & Soil Pollution, Focus, 4(4–5), 127–135.

    Article  CAS  Google Scholar 

  • Battaglia-Brunet, F., Foucher, S., Ignatiadis, I., Michel, C., & Morin, D. (2002). Reduction of chromate by fixed films of sulphate-reducing bacteria using hydrogen as electron source. Journal of Industrial Microbiology & Biotechnology, 28, 154–159.

    Article  CAS  Google Scholar 

  • Benson, D., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A., et al. (1999). GenBank. Nucleic Acids Research, 27, 12–17.

    Article  CAS  Google Scholar 

  • Bhide, J. V., Dhakephalkar, P. K., & Paknikar, K. M. (1996). Microbiological process for the removal of Cr(VI) from chromate-bearing cooling tower effluent. Biotechnology Letters, 18, 667–672.

    Article  CAS  Google Scholar 

  • Blasiak, J., & Kowalik, J. (2000). A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutation Research, 469, 135–145.

    CAS  Google Scholar 

  • Böttcher, M. E., Brumsack, H. J., & De Lange, G. J. (1998a). Sulphate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. Proceedings of Ocean Drilling Program, Scientific Results, 160, 365–373.

    Google Scholar 

  • Böttcher, M. E., Oelshläger, B., Höpner, T., Brumsack, H. J., & Rullkötter, J. (1998b). Sulphate reduction related to the early diagenesic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (Southern North Sea): Stable isotope (13C, 34S, 18O) and other geochemical results. Organic Geochemistry, 29, 1517–1560.

    Article  Google Scholar 

  • Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P., & Rees, C. E. (1986). Sulphur and oxygen isotopes of sulphate in precipitation and lakewater, Quebec, Canada. Applied Geochemistry, 1, 601–606.

    Article  CAS  Google Scholar 

  • Cervantes, C. (1991). Bacterial interaction with chromate. Antonie van Leeuwenhoek, 59, 229–233.

    Article  CAS  Google Scholar 

  • Chardin, B., Giudici-Orticoni, M. T., De Luca, G., Guigliarelli, B., & Bruschi, M. (2003). Hydrogenases in sulphate-reducing bacteria function as chromium reductase. Applied Microbiology and Biotechnology, 63, 315–321.

    Article  CAS  Google Scholar 

  • Cheung, K. H., & Gu, J. D. (2003). Reduction of chromate (\( {\rm CrO}^{{2 - }}_{4} \)) by an enrichment consortium and an isolate of marine sulphate-reducing bacteria. Chemosphere, 52, 1523–1529.

    Article  CAS  Google Scholar 

  • Chulsung, K., Gunhui, Z., Baolin, D., Thornton, E. C., & Huifang, X. (2001). Chromium(VI) reduction by hydrogen sulphide in aqueous media: Stoichiometry and kinetics. Environmental Science and Technology, 35, 2219–2225.

    Article  CAS  Google Scholar 

  • Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., et al. (2003). The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31, 442–443.

    Article  CAS  Google Scholar 

  • Dilek, F. B., & Gökçay, C. F. (1996). Microbiology of activated sludge treating wastewater containing Ni(II) and Cr(VI). Water Science and Technology, 34, 183–191.

    Article  CAS  Google Scholar 

  • Epstein, S. & Mayeda, T. (1953). Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.

    Article  CAS  Google Scholar 

  • Fauque, G., & Ollivier, O. (2003). Anaerobes: The sulphate-reducing bacteria as an example of metabolic diversity. In A. T. Bull (Ed.) Microbial Diversity and Bioprospecting (vol. 17, pp. 169–176). Washington: ASM.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Francisco, R., Alpoim, M. C., & Morais, P. V. (2002). Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. Journal of Applied Microbiology, 92, 837–843.

    Article  CAS  Google Scholar 

  • Gruber, J. E., & Jennette, K. W. (1978). Metabolism of the carcinogen chromate by rat liver microsomes. Biochemical and Biophysical Research Communications, 82, 700–706.

    Article  CAS  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Horita, J., Ueda, A., Mizukami, K., & Takatori, I. (1989). Automatic δD and δ18O analyses of multi-water samples using H2- and CO2-water equilibration methods with a common equilibration set-up. Applied Radiation and Isotopes, 40, 801–805.

    Article  CAS  Google Scholar 

  • Joulian, C., Ramsing, N. B., & Ingvorsen, K. (2001). Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulphite reductase gene sequences retrieved from estuarine sediments. Applied and Environmental Microbiology, 67, 3314–3318.

    Article  CAS  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In H. N. Munro (Ed.) Mammalian Protein Metabolism (pp. 211–232). New York: Academic.

    Google Scholar 

  • Kim, C., Zhou, Q., Deng, B., Thornton, E., & Xu, H. (2001). Chromium reduction by hydrogen sulphide in aqueous media: Stoichiometry and kinetics. Environmental Science and Technology, 35, 2219–2225.

    Article  CAS  Google Scholar 

  • Kimura, M. (1980). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., Harris, S. H., Tay, S. T., & Sulfita, J. M. (1999). Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. and their ecological roles. Applied and Environmental Microbiology, 65, 2300–2306.

    CAS  Google Scholar 

  • Lojou, E., Bianco, P., & Bruschi, M. (1998). Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 452, 167–177.

    CAS  Google Scholar 

  • Lomans, B. P., Leijdekkers, P., Wesselink, J.-J., Bakkes, P., Pol, A., van der Drift, C., et al. (1991). Obligate sulphide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulphide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Applied and Environmental Microbiology, 67, 4017–4023.

    Article  Google Scholar 

  • Lovley, D. R. (1994). Microbial reduction of iron, manganese and other metals. Advances in Agronomy, 54, 175–229.

    Article  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Applied and Environmental Microbiology, 60, 726–728.

    CAS  Google Scholar 

  • Lupton, F. S., DeFilippi, L. J., & Goodman, J.R. (1991). Bioremediation of chromium (VI) contaminated aqueous systems by sulphate reducing bacteria. US patent n° 5,062,956.

  • Michel, C., Brugna, M., Aubert, C., Bernadac, A., & Bruschi, M. (2001). Enzymatic reduction of chromate: Comparative studies using sulphate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases. Applied Microbiology and Biotechnology, 55, 95–100.

    Article  CAS  Google Scholar 

  • Pettine, M., Millero, F. J., & Passiro, R. (1994). Reduction of chromium (VI) with hydrogen sulphide in NaCl media. Marine Chemistry, 46, 335–344.

    Article  CAS  Google Scholar 

  • Rai, D., Moore, D. A., Hess, N. J., Rao, L., & Clark, S. B. (2004). Chromium(III) hydroxide solubility in the aqueous \({\text{Na}}^{ + } - {\text{OH}}^{ - } - {\text{H}}_{2} {\text{PO}}^{ - }_{4} - {\text{HPO}}^{{2 - }}_{4} - {\text{PO}}^{3}_{4} - {\text{H}}_{2} {\text{O}}\) system. A thermodynamic model. Journal of Solution Chemistry, 33, 1213–1242.

    Article  CAS  Google Scholar 

  • Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorganic Chemistry, 26, 345–349.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 405–425.

    Google Scholar 

  • Sakai, H., & Krouse, H. R. (1971). Elimination of memory effects in 18O–16O determination in sulphates. Earth and Planetary Science Letters, 11, 361–373.

    Article  Google Scholar 

  • Smith, W., & Gadd, G. (2000). Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. Journal of Applied Microbiology, 88, 983–991.

    Article  CAS  Google Scholar 

  • Sinha, S. N., & Barnerjee, R. D. (1997). Ecological role of thiosulphate and sulphide utilizing purple nonsulphur bacteria of a riverine ecosystem. FEMS Microbiology Ecology, 24, 211–220.

    Article  CAS  Google Scholar 

  • Tebo, B. M., & Obraztsova, A. Y. (1998). Sulphate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiology Letters, 162, 193–198.

    Article  CAS  Google Scholar 

  • Thode, H. G., Monster, J., & Dunford, H. B. (1961). Sulphur isotope geochemistry. Geochimica and Cosmochimica Acta, 25, 50–174.

    Article  Google Scholar 

  • Thomsen, T. R., Finster, K., & Ramsing, N. B. (2001). Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Applied and Environmental Microbiology, 67, 1646–1656.

    Article  CAS  Google Scholar 

  • Turick, C. E., & Appel, W. A. (1997). Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater. US Patent n° 5,681,739.

  • Turpeinen, R., Kairesalo, T., & Häggblom, M. M. (2004). Microbial community structure and activity in arsenic-, chromium- and copper- contaminated soils. FEMS Microbiology Ecology, 47, 39–50.

    Article  CAS  Google Scholar 

  • Vainshtein, M., Kuschk, P., Mattusch, J., Vatsourina, A., & Wiessner, A. (2003). Model experiments on the microbial removal of chromium from contaminated groundwater. Water Research, 37, 1401–1405.

    Article  CAS  Google Scholar 

  • Van de Peer, Y., & De Wachter, R. (1994). TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences, 10, 569–570.

    Google Scholar 

  • Wagner, M., Roger, A., Flax, J., Brusseau, G. & Stahl, D. (1998). Phylogeny of dissimilatory sulphite reductases supports an early origin of sulphate respiration. Journal of Bacteriology, 180, 2975–2982.

    CAS  Google Scholar 

  • Wang, Y. T. (2000). Microbial reduction of chromate. In D. R. Lovley (Ed.), Environmental microbe-metal interactions, chap. 10 (pp. 225–235). Washington D.C.: ASM.

    Google Scholar 

  • Zilles, J. L., Peccia, J., Kim, M. W., Hung, C. H., & Noguera, D. R. (2002). Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Applied and Environmental Microbiology, 68, 2763–2769.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is the BRGM contribution n° 02811. This work was carried out in the framework of the Commission of European Union contract no EVK1-CT-1999-00033 (METALBIOREDUCTION project) and received financial support from a BRGM research project (BIOPROC project). We thank M. Marggraff from Munters-Euroform for providing filling materials and C. Flehoc from Metrology, Monitoring and Analysis Division, BRGM/MMA, for the isotopic determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ignatiadis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia-Brunet, F., Michel, C., Joulian, C. et al. Relationship Between Sulphate Starvation and Chromate Reduction in a H2-fed Fixed-film Bioreactor. Water Air Soil Pollut 183, 341–353 (2007). https://doi.org/10.1007/s11270-007-9383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9383-3

Keywords

Navigation