Skip to main content
Log in

The Evaluation of Simultaneous COD and Sulfate Removal at High COD/SO42− Ratio and Haloalkaline Condition

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effects of different electron donors on sulfate reduction at high COD/SO42− and haloalkaline conditions were investigated. For this purpose, the anaerobic submerged membrane reactor, fed with acetate and ethanol as an electron donor, was operated at a salinity of 10 g NaCl/L and a high pH (about 9.5) for 210 days. The bioreactor was inoculated with a mixed haloalkaliphilic culture and was enriched with saline soda from Lake Van, Turkey. The bioreactor’s performance was mainly evaluated with the removal of chemical oxygen demand (COD) and sulfate and changes in microbial community. A significant increase for both COD and sulfate removal was simultaneously achieved in the ethanol-fed bioreactor. The highest removal efficiency of COD and sulfate was about 70% and 80%, respectively, once the ratio of COD/SO42− was 6. The effect of hydraulic retention time on treatment performance of the bioreactor was inconsiderable as a result of the low flux during the whole operation time. There was no biogas production throughout the experiment due to the haloalkaline condition in reactor medium. From DGGE analysis, it was postulated that ethanol usage can cause bacterial abundance and diversity in bioreactor medium with no detection of sulfate-reducing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pineau, S.: Formation of the Fe(II–III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corros. Sci. 50(4), 1099–1111 (2008)

    Article  Google Scholar 

  2. Silva, A.M.; Lima, R.M.F.; Leao, V.A.: Mine water treatment with limestone for sulfate removal. J. Hazard. Mater. 221–222, 45–55 (2012)

    Article  Google Scholar 

  3. Ashane, W.; Fernando, M.; Ilankoon, I.M.S.K.; Syed, T.H.; Yellishetty, M.: Challenges and opportunities in the removal of sulphate ions in contaminated mine water: a review. Miner. Eng. 117, 74–90 (2018)

    Article  Google Scholar 

  4. Brahmacharimayum, B.; Mohanty, M.P.; Ghosh, P.K.: Theoretical and practical aspects of biological sulfate reduction: a review. Glob. Nest J. 21(2), 222–244 (2019)

    Google Scholar 

  5. McCarty, P.L.; Sawyer, C.N.; Parkin, G.F.: Chemistry for Environmental Engineering and Science. Mc-Graw-Hill, New York (2003)

    Google Scholar 

  6. Jing, Z.; Hu, Y.; Niu, Q.; Liu, Y.; Li, Y.; Wang, X.C.: UASB performance and electron competition between methane-producing archea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour. Technol. 137, 349–357 (2013)

    Article  Google Scholar 

  7. Kalyuzhnyi, S.V.; Leon-Fragoso, C.D.; Rodriguez-Martinez, J.: Biological sulfate reduction in an UASB reactor fed with an ethanol as electron donor. Microbiology 66, 674–680 (1997)

    Google Scholar 

  8. Acharya, B.K.; Mohana, S.; Madamwar, D.: Anaerobic treatment of distillery spent wash—a study on upflow anaerobic fixed film bioreactor. Bioresour. Technol. 99, 4621–4626 (2008)

    Article  Google Scholar 

  9. Li, Y.Y.; Lam, S.; Fang, H.H.P.: Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate. Water Res. 30, 1555–1562 (1996)

    Article  Google Scholar 

  10. Zhao, Y.G.; Wang, A.J.; Ren, N.Q.: Effect of carbon sources on sulfidogenic bacterial communities during the starting-up of acidogenic sulfate-reducing bioreactors. Bioresour. Technol. 101, 2952–2959 (2010)

    Article  Google Scholar 

  11. Zhou, J.; Xing, J.: Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors. Biochem. Eng. J. 96, 14–22 (2015)

    Article  Google Scholar 

  12. Nagpal, S.; Chuichulcherm, S.; Peeva, L.; Livingston, A.: Microbial sulfate-reduction in a liquid–solid fluidized bed reactor. Biotechnol. Bioeng. 70, 370–380 (2000)

    Article  Google Scholar 

  13. Vallero, M.V.G.; Lettinga, G.; Lens, P.N.L.: High sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. J. Membr. Sci. 253, 217–232 (2005)

    Article  Google Scholar 

  14. Zhao, Y.G.; Li, X.W.; Wang, J.C.; Bai, J.; Tian, W.J.: Performance of a sulfidogenic bioreactor and bacterial community shifts under alkalinity levels. Bioresour. Technol. 101, 9190–9196 (2010)

    Article  Google Scholar 

  15. Sahinkaya, E.; Yurtsever, A.; Isler, E.; Coban, I.; Aktaş, Ö.: Sulfate reduction and filtration performance of an anaerobic membrane bioreactor (AnMBR). Chem. Eng. J. 349, 47–55 (2018)

    Article  Google Scholar 

  16. De Smul, A.; Dries, J.; Goethals, L.; Verstraete, W.: High rates of microbial sulphate reduction in a mesophilic ethanol-fed expanded-granular-sludge-blanket reactor. Appl. Microbiol. Biotechnol. 48, 297–303 (1997)

    Article  Google Scholar 

  17. Sousa, J.A.; Plugge, C.M.; Stams, A.J.; Bijmans, M.F.: Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions. Water Res. 68, 67–76 (2015)

    Article  Google Scholar 

  18. Sorokin, I.D.; Kravchenko, I.K.; Doroshenko, E.V.; Boulygina, E.S.; Zadorina, E.V.; Tourova, T.P.; Sorokin, D.Y.: Haloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microbiol. Ecol. 65, 433–452 (2008)

    Article  Google Scholar 

  19. Sorokin, D.Y.; Tourova, T.P.; Kolganova, T.V.; Detkova, E.N.; Galinski, E.A.; Muyzer, G.: Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov. Desulfonatronum thiosulfatophilum sp. nov. Desulfonatronovibrio. Extremophiles 15, 391–401 (2011)

    Article  Google Scholar 

  20. Zhao, B.; Yan, Y.; Chen, S.: How could haloalkaliphilic microorganisms contribute to biotechnology? Can. J. Microbiol. 60, 717–727 (2014)

    Article  Google Scholar 

  21. Liamleam, W.; Annachhatre, A.P.: Electron donors for biological sulfate reduction. Biotechnol. Adv. 255, 452–463 (2007)

    Article  Google Scholar 

  22. Zhou, J.M.; Song, Z.Y.; Yan, D.J.; Liu, Y.L.; Yang, M.H.; Cao, H.B.; Xing, J.M.: Performance of a haloalkaliphilic bioreactor and bacterial community shifts under different COD/SO −24 ratios and hydraulic retention times. J. Hazard. Mater. 275, 53–62 (2014)

    Article  Google Scholar 

  23. Zhou, J.M.; Song, Z.Y.; Yan, D.J.; Liu, Y.L.; Yang, M.H.; Cao, H.B.; Xing, J.M.: Performance of a haloalkaliphilic bioreactor under different NO3/SO42−. Bioresour. Technol. 153, 216–222 (2014)

    Article  Google Scholar 

  24. Kempe, S.; Kazmierczak, J.; Landmann, G.; Konuk, T.; Reimer, A.; Lipp, A.: Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605–608 (1991)

    Article  Google Scholar 

  25. https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium742.pdf. Accessed 04 April 2018

  26. Aslan, M.; Saatçi, Y.; Hanay, O.; Hasar, H.: Effect of biogas sparging with different membrane modules on membrane fouling in anaerobic submerged membrane bioreactor (AnSMBR). Environ. Sci. Pollut. Res. 21(5), 3285–3293 (2014)

    Article  Google Scholar 

  27. APHA: Standard Methods for the Examination of Water and Wastewater, 18th edn. APHA, Washington, D.C. (1992)

    Google Scholar 

  28. Taskan, E.; Hasar, H.: Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell. Appl. Biochem. Biotechnol. 175, 2300–2308 (2015)

    Article  Google Scholar 

  29. Kolmert, A.; Johnson, D.B.: Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 76, 836–843 (2001)

    Article  Google Scholar 

  30. Koschorreck, M.; Kunze, T.; Luther, G.; Bozau, E.; Wendth-Potthoff, K.: Accumulation and inhibitory effects of acetate in a sulphate reducing in situ reactor for the treatment of an acidic pit lake. In: Mine Water Process, Policy and Progress, IMWA Symposium, Newcastle upon Tyne/UK, 19–23 September, International Mine Water Association (IMWA), pp. 101–109 (2004)

  31. Lens, P.N.L.; Visser, A.; Jannsen, A.J.H.; Hulshoff, P.L.W.; Lettinga, G.: Biotechnological treatment of sulfate rich wastewaters. Crit. Rev. Environ. Sci. Technol. 28, 41–88 (1998)

    Article  Google Scholar 

  32. Stephenson, T.; Judd, S.; Jefferson, B.; Brindle, K.: Membrane Bioreactor for Wastewater Treatment. IWA Publishing, London (2000)

    Google Scholar 

  33. Hao, T.; Xiang, P.; Mackey, H.R.; Chi, K.; Lu, H.; Chui, H.K.; Loosdrecht, M.C.M.V.; Chen, G.H.: A review of biological sulfate conversions in wastewater treatment. Water Res. 65, 1–21 (2014)

    Article  Google Scholar 

  34. Yurtsever, A.; Çınar, Ö.; Sahinkaya, E.: Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J. Membr. Sci. 511, 228–237 (2016)

    Article  Google Scholar 

  35. Liu, B.; Wu, W.F.; Zhao, Y.J.; Gu, X.Y.; Li, S.; Zhang, X.X.; Wang, Q.; Li, R.L.; Yang, S.G.: Effects of ethanol/SO42− ratio and pH on mesophilic sulfate reduction in UASB reactors. Afr. J. Microbiol. Res. 4, 2215–2222 (2010)

    Google Scholar 

  36. Rzeczycka, M.; Miernik, A.; Markiewicz, Z.: Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate reducing bacteria. Pol. J. Microbiol. 59, 241–247 (2010)

    Article  Google Scholar 

  37. Akuzawa, M.; Hori, T.; Haruta, S.; Ueno, Y.; Ishii, M.; Igarashi, Y.: Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb. Ecol. 61, 595–605 (2011)

    Article  Google Scholar 

  38. Zhu, L.; Dai, X.; Xu, X.; Lv, M.; Cao, D.: Microbial community analysis for aerobic granular sludge reactor treating high-level 4-chloroaniline wastewater. Int. J. Environ. Sci. Technol. 11, 1845–1854 (2014)

    Article  Google Scholar 

  39. Jin, Z.; Ji, F.Y.; Xu, X.; Xu, X.Y.; Chen, Q.K.; Li, Q.: Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage. Biodegradation 25, 777–786 (2014)

    Article  Google Scholar 

  40. Zeng, T.J.; Yang, G.J.; Wang, D.B.; Li, X.M.; Zheng, W.; Yang, Q.; Zeng, G.M.: Microbial community analysis involved in the aerobic/extended-idle process performing biological phosphorus removal. Water Sci. Technol. 67, 485–493 (2013)

    Article  Google Scholar 

  41. van Houten, B.H.; van Doesburg, W.; Dijkman, H.; Copini, C.; Smidt, H.; Stams, A.J.: Long-term performance and microbial community analysis of a full-scale synthesis gas fed reactor treating sulfate-and zinc-rich wastewater. Appl. Microbiol. Biotechnol. 84, 555–563 (2009)

    Article  Google Scholar 

  42. Camejo, P.Y.; Santo Domingo, J.; McMahon, K.D.; Noguera, D.R.: Genome-enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa”. Appl. Environ. Sci. 2(5), 00059-17 (2017)

    Google Scholar 

  43. Dafale, N.; Agrawal, L.; Kapley, A.; Meshram, S.; Purohit, H.; Wate, S.: Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic–oxic bioreactor system degrading azo dyes. Bioresour. Technol. 101, 476–484 (2010)

    Article  Google Scholar 

  44. Kilic, A.; Sahinkaya, E.; Cinar, O.: Kinetics of autotrophic denitrification process and the impact of sulphur/limestone ratio on the process performance. Environ. Technol. 35, 2796–2804 (2014)

    Article  Google Scholar 

  45. Abdel-Rahman, M.A.; Desouky, S.E.S.; Azab, M.S.; Esmael, M.E.: Fermentative production of polyhydroxyalkanoates (PHAs) from glycerol by Zobellella taiwanensis Azu-IN1. J. Appl. Biol. Biotechnol. 5, 16–25 (2017)

    Google Scholar 

  46. Wang, K.; Sheng, Y.; Cao, H.; Yan, K.; Zhang, Y.: Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. Chem. Eng. J. 307, 150–158 (2017)

    Article  Google Scholar 

  47. Hao, T.; Wei, L.; Lu, H.; Chui, H.; Mackey, H.R.; van Loosdrecht, M.C.; Chen, G.: Characterization of sulfate-reducing granular sludge in the SANI® process. Water Res. 47, 7042–7052 (2013)

    Article  Google Scholar 

  48. Garcia, G.P.P.; Diniz, R.C.O.; Bicalho, S.K.; Franco, V.A.D.S.; Gontijo, E.M.D.O.; Toscano, R.A.; Canhestro, K.O.; Santos, M.R.D.; Carmo, A.L.R.D.; Lobato, L.C.S.; Brandt, E.M.F.; Chernicharo, C.A.L.; Araujo, J.C.D.: Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics. Environ. Technol. 36, 2177–2189 (2015)

    Article  Google Scholar 

  49. Wilcox, S.J.; Hawkes, D.L.; Hawkes, F.R.; Guwy, A.J.: A neural network, based on bicarbonate monitoring, to control anaerobic digestion. Water Res. 29, 1465–1470 (1995)

    Article  Google Scholar 

  50. Pendatesh, A.R.; Razi, F.; Madaeni, S.; Abdullah, L.; Abidin, Z.; Biak, D.R.: Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater. Chem. Eng. J. 168, 140–150 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The significant part of this work includes PhD Thesis data of Hande Türk. This research was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with project numbers 116Y133 and 110Y093. We also thank Burcin Yildiz and Ergin Taskan for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özge Hanay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanay, Ö., Turk, H. The Evaluation of Simultaneous COD and Sulfate Removal at High COD/SO42− Ratio and Haloalkaline Condition. Arab J Sci Eng 45, 4463–4475 (2020). https://doi.org/10.1007/s13369-020-04451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04451-4

Keywords

Navigation